J. Serret, T. Stratford, P. Thies, V. Venugopal, T. Tezdogan
{"title":"Hydrodynamic Response of the Deep Turbine Installation-Floating Concept","authors":"J. Serret, T. Stratford, P. Thies, V. Venugopal, T. Tezdogan","doi":"10.1115/POWER2019-1849","DOIUrl":"https://doi.org/10.1115/POWER2019-1849","url":null,"abstract":"\u0000 Floating offshore wind turbine (FOWT) installations are progressing from the R&D stage to commercial installation projects. The prospective sites are situated in increasingly deeper water and further away from the shore. This paper presents the Deep Turbine Installation-Floating (DTI-F) concept, an innovative hybrid spar buoy-based FOWT capable of being able to raise and lower the tower and nacelle, which simplifies construction, installation, maintenance and decommissioning. The study is focused on the hydrodynamics of the moored floating system, and it is based on experimental and numerical modelling work. A 1:45 Froude scaled model of the DTI-F wind concept was tested using three different mooring configurations: i) three mooring lines, ii) four mooring lines, and iii) three mooring lines with a delta connection. Free decay and stiffness decay tests were carried out together with regular and irregular wave tests. The numerical study comprises diffraction (ANSYS AQWA) and time-domain modelling (OrcaFlex).\u0000 The experimental hydrostatic and hydrodynamic results are compared with the numerical simulations based on the as-built scale model. Considering the natural frequencies results obtained for the three mooring configurations, the three lines configuration without delta connection was selected as the most suitable design. The obtained results for the three mooring lines configuration show good agreement between the experiment and numerical simulations. The presented analysis of the design concept indicates a high degree of technical feasibility.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120992348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuel Swelling and Creep Analysis for a MURR LEU U-10Mo Monolithic Plate","authors":"W. Mohamed, H. Roh, John Stillman, E. Wilson","doi":"10.1115/POWER2019-1934","DOIUrl":"https://doi.org/10.1115/POWER2019-1934","url":null,"abstract":"\u0000 U-10Mo monolithic fuel is considered for the conversion of the US High Performance Research and Test Reactors (USHPRR) from high enriched uranium (HEU) to high density low enrichment uranium (LEU) fuel. The monolithic fuel plates are comprised of high density LEU-10Mo fuel core sandwiched between zirconium diffusion barrier interlayers and encapsulated in an aluminum alloy cladding. The conversion of the University of Missouri Research Reactor (MURR), one of the USHPRR fleet, from the use of HEU to LEU is currently in progress. Preliminary safety analysis for the conversion of MURR assumes maximum increase in plate thickness of about 0.1 mm due to irradiation effects. Finite element analysis (FEA) was used to model the thermo-mechanical behavior of a MURR LEU-10Mo monolithic plate under typical irradiation conditions in the LEU core. The maximum increase of the plate thickness was determined considering various combinations of swelling correlations and coefficient of creep rate. Analysis of the displacement profiles showed that maximum displacement along the plate thickness direction occurs at the same location in all cases. For any of the swelling correlations considered in this work, the lowest creep rate coefficient, 5 (× 10−25 cm3/MPa-fission), was found to cause larger outboard displacement. The maximum increase in plate thickness was found not to exceed 0.083 mm with a combination of fuel creep coefficient in the range between 750 and 250 (× 10−25 cm3/MPa-fission) and the the 95% UCL of the most conservative U-10Mo correlation available to describe fuel swelling.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123216442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}