{"title":"A New TDMA Scheduling Algorithm for Data Collection over Tree-Based Routing in Wireless Sensor Networks","authors":"Vahid Zibakalam","doi":"10.5402/2012/864694","DOIUrl":"https://doi.org/10.5402/2012/864694","url":null,"abstract":"Data collection is one of the most important tasks in Wireless Sensor Networks (WSNs) where a set of sensors measure properties of a phenomenon of interest and send their data to the sink. Minimizing the delay of the data collection is important for applications in which certain actions based on deadline are needed, such as event-based and mission-critical applications. Time Division Multiple Access (TDMA) scheduling algorithms are widely used for quick delivery of data with the objective of minimizing the time duration of delivering data to the sink, that is, minimizing the delay. In this paper, we propose a new centralized TDMA scheduling algorithm that is based on nodes congestion for general ad hoc networks. In the proposed algorithm, the scheduling is obtained using colouring of the original network. Colouring the original network is accomplished based on congestion degree of nodes. The simulation results indicate that the performance of our algorithm is better than that of node-based and level-based scheduling algorithms. We will also show that the performance of our proposed algorithm depends on the distribution of the nodes across the network.","PeriodicalId":314840,"journal":{"name":"ISRN Sensor Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133829751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of Node Failure in Wireless Image Sensor Networks","authors":"A. Mahapatro, P. M. Khilar","doi":"10.5402/2012/342514","DOIUrl":"https://doi.org/10.5402/2012/342514","url":null,"abstract":"A sequenced process of fault detection followed by dissemination of decision made at each node characterizes the sustained operations of a fault-tolerant wireless image sensor network (WISN). This paper presents a distributed self-fault diagnosis model for WISN where fault diagnosis is achieved by disseminating decision made at each node. Architecture of fault-tolerant wireless image sensor nodes is presented. Simulation results show that sensor nodes with hard and soft faults are identified with high accuracy for a wide range of fault rate. Both time and message complexity of the proposed algorithm are 𝑂(𝑛) for an 𝑛-node WISN.","PeriodicalId":314840,"journal":{"name":"ISRN Sensor Networks","volume":"337 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122757439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}