{"title":"Peramalan Jumlah Penumpang dan Barang di Bandar Udara Internasional Juanda dan Pelabuhan Tanjung Perak Menggunakan Model Hybrid ARIMAX dan Deep Learning Neural Networks","authors":"Bella Puspa Dewani, S. Suhartono, M. S. Akbar","doi":"10.12962/j27213862.v2i1.6805","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6805","url":null,"abstract":"Arus penumpang dan barang di Bandar Udara Internasional Juanda dan Pelabuhan Tanjung Perak cenderung fluktuatif dan tidak menentu. Oleh karena itu diperlukan pengetahuan akan keadaan arus penumpang dan barang di masa depan, agar pengembangan yang dilakukan tepat dan berguna. Penelitian ini dilakukan bertujuan untuk memodelkan serta mendapatkan peramalan mengenai jumlah penumpang dan barang di Bandar Udara Internasional Juanda dan Pelabuhan Tanjung Perak dengan membandingkan 5 model. Model tersebut antara lain model ARIMAX, model FFNN, model DLNN dengan 2 hidden layer, model hybrid ARIMAX-FFNN dan model hybrid ARIMAX-DLNN untuk mendapatkan hasil peramalan terbaik. Data yang digunakan dalam penelitian ini merupakan data sekunder yang diperoleh dari Badan Pusat Statistika (BPS). Data yang digunakan adalah data bulanan mulai Januari 2001 hingga Desember 2017 untuk Bandar Udara Internasional Juanda, sedangkan Pelabuhan Tanjung Perak mulai Januari 2006. Hasil penelitian menunjukkan model hybrid ARIMAX-DLNN memiliki kemampuan yang baik untuk menangkap pola data yang beragam dan menghasilkan ramalan yang baik pada data training. Hal tersebut dilihat dari nilai RMSEP yang lebih kecil dibandingkan dengan model lainnya. Namun model DLNN memiliki kemampuan yang baik dalam meramalkan data testing. Model terbaik untuk 8 variabel yang digunakan, terdapat 7 variabel dengan model terbaik yaitu model DLNN, sedangkan sisanya model hybrid ARIMAX-DLNN.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88950364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pemodelan Jumlah Persediaan Suku Cadang Mesin ATM di Provinsi Jawa Timur dengan Regresi Spasial","authors":"Mohammad Naufal Abdullah, Rifda Zukhrufi Almas, Amelia Kurnia Salwa, Sutikno Sutikno","doi":"10.12962/j27213862.v2i1.6811","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6811","url":null,"abstract":"Pelayanan ATM (Automated Teller Machine) adalah layanan perbankan yang dilakukan melalui mesin ATM yang dapat melayani selama 24 jam. Selain dapat membantu nasabah terkadang mesin ATM seringkali mengalami masalah kerusakan mesin. Pengalokasian persediaan suku cadang dari supplier ke gudang penyimpanan suku cadang (warehouse) yang berada di berbagai wilayah harus dilakukan dengan optimum dan efisien. Kasus ini mengandung informasi spasial, maka analisis data tidak akurat jika hanya menggunakan analisis regresi sederhana Penelitian ini akan membahas pemodelan jumlah persediaan suku cadang mesin ATM di Provinsi Jawa Timur. Sumber data pada penelitian ini adalah dari tugas akhir “Pemodelan Alokasi Persediaan Suku Cadang dengan Mempertimbangkan Pengaruh Spasial” oleh Siti Nur Afifah (1213100083). Metode yang akan digunakan adalah regresi spasial, karena diduga terdapat dependensi spasial pada variabelnya, sehingga dapat diketahui variabel prediktor yang berpengaruh signifikan terhadap jumlah persediaan suku cadang mesin ATM di Provinsi Jawa Timur. Berdasarkan analisis yang telah dilakukan, dapat diketahui bahwa jumlah persediaan suku cadang setiap kabupaten/kota di Jawa Timur berdistribusi normal dan terdapat dependensi spasial. Setelah dilakukan uji Lagrange Multiplier, dilanjutkan pemodelan menggunakan Spatial Lag Model (SLM) dan Spatial Error Model (SEM). Jumlah kerusakan suku cadang dan lifetime suku cadang berpengaruh signifikan terhadap jumlah persediaan suku cadang Provinsi Jawa Timur pada taraf signifikan 10%. Harga suku cadang tidak memberikan pengaruh yang signifikan terhadap jumlah persediaan suku cadang. Spatial Error Model adalah model terbaik dalam pemodelan jumlah persediaan suku cadang mesin ATM di Provinsi Jawa Timur.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89475296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spline Truncated Nonparametric Regression Modeling for Maternal Mortality Rate in East Java","authors":"Fadhlul Rahim, I. Budiantara, E. Permatasari","doi":"10.12962/j27213862.v2i1.6812","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6812","url":null,"abstract":"Maternal Mortality is the number of maternal deaths recorded during pregnancy, childbirth, and childbirth caused by pregnancy and childbirth, but not caused by accidents or falls. Since 2012 until 2015 it has been noted that maternal mortality rate has decreased from 359 to 305 maternal deaths per 100,000 live births. Despite the decline, the figure is still far from the target of the Sustainable Development Goals (SDGs) of 70 deaths per 100,000 live births. The analytical method used to determine the factors that influence maternal mortality rate is Nonparametric Spline Truncated Regression because the pattern of correlation between maternal mortality rate and each predictor variable obtained does not form a particular pattern. Based on the model obtained, the results are that all predictor variables have a significant effect on maternal mortality rate, namely the percentage of households with clean and healthy behavior, percentage of obstetric complications handling, percentage of pregnant women visits, percentage of households receiving cash assistance, and ratio of health centers and hospitals with a determination coefficient is 88 ,13 percent.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84265419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Clustering of Households in Madura Based on Factors Affecting Their Ingestion of Clean Water Using Similarity Weight and Filter Method","authors":"Astarani Wili Martha, I. Zain","doi":"10.12962/j27213862.v2i1.6813","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6813","url":null,"abstract":"Clean Water and Sanitation is one of SDGs’ indicators that relates to human’ demand for clean water. Three of four regencies in Madura Island reportedly have suffered in drought, thus it leads this research to fulfill Madura people need of water. Madura Island has 3097 households in need of water. However, not all households could fetch their need. This research aims to classify the households of Madura Island regarding factors which affect their ingestion of clean water using cluster analysis. There are clustering numerical data and categorical data. Therefore, this research uses Similarity Weight and Filter Method. SWFM is one of clustering mix methods in which there are clustering numerical, using hierarchical ward, and clustering categorical, using k-modes. To analyze the clustering numerical data, there are 3 variables and it gains two optimum groups by using ward method with pseudo-F 1001,172. Clustering categorical analysis uses 6 variables with k-modes and gains three groups and SWFM gains five groups. Five groups are selected because they produced the smallest ratio 0,006627 in the group.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83674397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting Popularity of Movie Using Support Vector Machines","authors":"D. Rantini, Rosyida Inas, S. W. Purnami","doi":"10.12962/j27213862.v2i1.6806","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6806","url":null,"abstract":"There are many movies performed, from low until high rating, which is the movie maybe popular or not popular. If many people watched that movie maybe it is popular, in other hand if a movie is watched by a little person so that movie can called as not popular movie. Popularity of movie can determined by several factors, such as likes, ratings, comments, etc. To determine popular or not popular of movie based on features, will use two classification methods that is logistic regression and Support Vector Machine (SVM). In this research, the data are Conventional and Social Media Movies Dataset 2014 and 2015. To get the best model and without ignoring the principle of parsimony, will do feature selection. The selected features are genre, sentiment, likes, and comments. That features will be used to classify the popularity of movies. This research used two classification methods namely logistic regression and Support Vector Machine (SVM). When used logistic regression, the accuracy is 77.29%, while used SVM the accuracy is 83.78%. Based on the accuracy of both methods, it is found that SVM gives the highest accuracy for CSM dataset. The highest accuracy is obtained from the SVM method with non-stratified holdout training-testing strategy.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88574898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rakhmah Wahyu Maya, A. Ramadhan, Ikacipta Mega Ayuputri, B. W. Otok
{"title":"Pengelompokan Kabupaten/Kota di Jawa Timur berdasarkan Faktor-Faktor yang Mempengaruhi AIDS","authors":"Rakhmah Wahyu Maya, A. Ramadhan, Ikacipta Mega Ayuputri, B. W. Otok","doi":"10.12962/j27213862.v2i1.6807","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6807","url":null,"abstract":"Acquired Immune Deficiency Syndrome (AIDS) merupakan salah satu penyakit mematikan yang sampai saat ini belum ditemukan vaksin pencegahan atau obat untuk menyembuhkannya. AIDS disebabkan oleh virus Human Immunodeficiency Virus (HIV). Virus tersebut menyerang sistem kekebalan tubuh manusia. Sebagian besar orang tertular AIDS dikarenakan faktor pendidikan, kemiskinan, kesehatan yang didapatkan oleh masyarakat dan tenaga kesehatan. Oleh karena itu, peneliti menganalisis cluster faktor-faktor yang mempengaruhi penyakit AIDS di Jawa Timur pada tahun 2008. Analisis Cluster digunakan untuk mengelompokkan wilayah terjadinya penyakit AIDS. Penelitian tersebut membandingkan hasil pengujian analisis cluster Hirarki dengan menggunakan metode single linkage , complete linkage dan average linkage. Berdasarkan hasil analisis dapat diketahui bahwa jumlah cluster optimum yang terbentuk adalah 3 cluster. Selanjutnya dilakukan analisis manova. Berdasarkan hasil manova dapat diketahui bahwa faktor Cluster berpengaruh terhadap variabel yang mempengaruhi penyakit AIDS di Jawa Timur.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"182 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81853717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning","authors":"Elly Pusporani, S. Qomariyah, Irhamah Irhamah","doi":"10.12962/j27213862.v2i1.6810","DOIUrl":"https://doi.org/10.12962/j27213862.v2i1.6810","url":null,"abstract":"Liver atau hati adalah organ yang perannya sangat vital dalam tubuh manusia. Penyakit liver sering dianggap sebagai silent killer (pembunuh diam-diam) karena adanya kemungkinan tidak timbul gejala. Permasalahan yang terjadi adalah sulitnya mengenali penyakit liver sejak dini., bahkan saat penyakit ini sudah menyebar pun masih sulit untuk dideteksi. Padahal penderita perlu mengetahui adanya gejala penyakit liver sejak dini agar dapat segera melakukan pengobatan. Adanya diagnosa penyakit liver sejak dini mampu meningkatkan kelangsungan hidup pasien. Pada penelitian ini diterapkan metode untuk klasifikasi penyakit liver menggunakan machine learning dan dibandingkan hasilnya dengan metode klasik. Data yang digunakan adalah Indian liver patients dataset (ILPD)yang diambil dari UCI machine learning. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain pengecekan missing value, imputasi, feature selection, dan resampling untuk mengatasi data imbalance. Setelah dilakukan preprocessing, selanjutnya dilakukan analisis menggunakan metode regresi logistik, decision tree, naivebayes, k-nearest neighbor, dan support vector machine. Berdasarkan nilai akurasi dan presisi, maka metode SVM memberikan hasil yang terbaik, tapi berdasarkan recall maka metode K-Nearest Neighbor memberikan hasil terbaik. Walaupun SVM memberikan hasil nilai akurasi dan presisi tertinggi tetapi terdapat ketimpangan yang besar antara nilai presisi dan recall yang dihasilkan, jika dibandingkan selisih nilai akurasi dan recall dari metode K-Nearest Neighbor.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81377119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pesantren Dan Homoseksualitas Kaum Santri (Studi Pada Pesantren Tua Salafiyyah dan Khalafiyyah di Kota Santri Jawa Timur)","authors":"Azam Syukur Rahmatullah, Muhammad Azhar","doi":"10.18326/INFSL3.V12I2.457-480","DOIUrl":"https://doi.org/10.18326/INFSL3.V12I2.457-480","url":null,"abstract":"The research has the effort to know a behavior of LGBT in Pesantren. The assumption until now, Pesantren was innocent and be the free zone of LGBT. This research is using qualitative and ethnomethodology’ approach. The location of research is in Pesantren Salafiyyah Kyai Kholil Bangkalan Madura, that old Pesantren Salafiyah in Madura. The other Pesantren is Pesantren Al-Hikam Bangkalan Madura that old Pesantren Khalafiyah in Madura. The results of research are; First, kinds of behavior that indicate LGBT in Pesantren are (1) kakak-adikan, kobel, mojok, kelon. The Second, the efforts from two pesantren are same handling based cognitive, spiritual and physical. The handling in Pesantren Salafiyyah Kyai Kholil Bangkalan, are three enhance; (1) period beginning of kesantrian (2) period of unification santri (3) period the end of kesantrian. The handling in Pondok Pesantren Al-Hikam with several methods; (1) assessment of kitab method (2) punishment method (3) counseling method (4) assessment and enlightenment method (5) supervision without served.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74674716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Wekke, Ngesti Wihayuningtyas, Payiz Zawahir Muntaha, M. Mukhlis
{"title":"Leadership Typology of Traditional Islamic Boarding School in Eastern Indonesia: Learning to Lead from DDI Mangkoso","authors":"I. Wekke, Ngesti Wihayuningtyas, Payiz Zawahir Muntaha, M. Mukhlis","doi":"10.18326/INFSL3.V12I2.331-348","DOIUrl":"https://doi.org/10.18326/INFSL3.V12I2.331-348","url":null,"abstract":"This article aims to analyses the leadership style of Muslim priest (kyai) in traditional Islamic boarding school (pesantren) seeing from Weber’s leadership theory in managing human resources, infrastructure, finance, and social capital in the pesantren for development. This research also intends to review the existence of selected traditional Islamic boarding school with the types of what Weber’s explain in his article. Using library study in a qualitative approach in nature on several sources, i.e., library books, documents and information on the internet. DDI Mangkoso in South Sulawesi province was selected due to its long history as Islamic institution and their renowned and charismatic and transformative kyai since their early years of establishment. The analysis in this research somehow managed to reveal that the three Weber’s patterns type is found in the leadership of kyai in several pesantrens around Indonesia including in DDI Mangkoso. Traditional leadership of DDI Mangkoso’s kyai is strongly influenced by the tradition of education in pesantren which respects kyai’s position as the leader and the founder of the pesantren. However, charismatic and transformative leadership through Anregurutta K.H. Abdul Rahman Ambo Dalle and KH Farid Wajedi were the two most influence styles among Kyai in DDI Mangkoso until now","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"82 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72371433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluasi Reflektif Pengembangan Karakter Bangsa (Nasionalisme) Dalam Pendidikan Agama Buddha Tingkat Sekolah Dasar","authors":"Hesti Sadtyadi","doi":"10.18326/INFSL3.V12I2.371-394","DOIUrl":"https://doi.org/10.18326/INFSL3.V12I2.371-394","url":null,"abstract":"The Objective of this Study is to a reflective evaluation of Indonesian national character in the education of Buddhism in elementary schools, which can produce a picture that poures national values character (nationalism) in the context of learning that is administered. The reflective evaluation is carried out with the CIPP evaluation model, which includes five constructs and five reflective Buddhism educational instruments wich consits of context dimensions, the teacher’s interest, the teaching materials, the learning process and the product. All instruments are valid and reliable. The result of the development of the reflective evaluation instrument of Buddhist education that has been built consists of five aspects / dimensions of evaluation with the name Context, Teachers’ Knowledge / Interest (Input), Materials (Input), Process and Product (Product). The content of the nation’s character in Buddhism is explicit in the components of History, Faith (Saddha), Behavior or Morality (Sila), Buddhist holly Books (Tipitaka), Meditation (Samadhi), and Wisdom (Panna), accumulated in context, input, process, and output, through the evaluation of the Buddha’s education refelective in the development of the nation’s character.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83483283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}