用机器学习方法对肝病患者进行分类

Elly Pusporani, S. Qomariyah, Irhamah Irhamah
{"title":"用机器学习方法对肝病患者进行分类","authors":"Elly Pusporani, S. Qomariyah, Irhamah Irhamah","doi":"10.12962/j27213862.v2i1.6810","DOIUrl":null,"url":null,"abstract":"Liver atau hati adalah organ yang perannya sangat vital dalam tubuh manusia. Penyakit liver sering dianggap sebagai silent killer (pembunuh diam-diam) karena adanya kemungkinan tidak timbul gejala. Permasalahan yang terjadi adalah sulitnya mengenali penyakit liver sejak dini., bahkan saat penyakit ini sudah menyebar pun masih sulit untuk dideteksi. Padahal penderita perlu mengetahui adanya gejala penyakit liver sejak dini agar dapat segera melakukan pengobatan. Adanya diagnosa penyakit liver sejak dini mampu meningkatkan kelangsungan hidup pasien. Pada penelitian ini diterapkan metode untuk klasifikasi penyakit liver menggunakan machine learning dan dibandingkan hasilnya dengan metode klasik. Data yang digunakan adalah Indian liver patients dataset (ILPD)yang diambil dari UCI machine learning. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain pengecekan missing value, imputasi, feature selection, dan resampling untuk mengatasi data imbalance. Setelah dilakukan preprocessing, selanjutnya dilakukan analisis menggunakan metode regresi logistik, decision tree, naivebayes, k-nearest neighbor, dan support vector machine. Berdasarkan nilai akurasi dan presisi, maka metode SVM memberikan hasil yang terbaik, tapi berdasarkan recall maka metode K-Nearest Neighbor memberikan hasil terbaik. Walaupun SVM memberikan hasil nilai akurasi dan presisi tertinggi tetapi terdapat ketimpangan yang besar antara nilai presisi dan recall yang dihasilkan, jika dibandingkan selisih nilai akurasi dan recall dari metode K-Nearest Neighbor.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning\",\"authors\":\"Elly Pusporani, S. Qomariyah, Irhamah Irhamah\",\"doi\":\"10.12962/j27213862.v2i1.6810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liver atau hati adalah organ yang perannya sangat vital dalam tubuh manusia. Penyakit liver sering dianggap sebagai silent killer (pembunuh diam-diam) karena adanya kemungkinan tidak timbul gejala. Permasalahan yang terjadi adalah sulitnya mengenali penyakit liver sejak dini., bahkan saat penyakit ini sudah menyebar pun masih sulit untuk dideteksi. Padahal penderita perlu mengetahui adanya gejala penyakit liver sejak dini agar dapat segera melakukan pengobatan. Adanya diagnosa penyakit liver sejak dini mampu meningkatkan kelangsungan hidup pasien. Pada penelitian ini diterapkan metode untuk klasifikasi penyakit liver menggunakan machine learning dan dibandingkan hasilnya dengan metode klasik. Data yang digunakan adalah Indian liver patients dataset (ILPD)yang diambil dari UCI machine learning. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain pengecekan missing value, imputasi, feature selection, dan resampling untuk mengatasi data imbalance. Setelah dilakukan preprocessing, selanjutnya dilakukan analisis menggunakan metode regresi logistik, decision tree, naivebayes, k-nearest neighbor, dan support vector machine. Berdasarkan nilai akurasi dan presisi, maka metode SVM memberikan hasil yang terbaik, tapi berdasarkan recall maka metode K-Nearest Neighbor memberikan hasil terbaik. Walaupun SVM memberikan hasil nilai akurasi dan presisi tertinggi tetapi terdapat ketimpangan yang besar antara nilai presisi dan recall yang dihasilkan, jika dibandingkan selisih nilai akurasi dan recall dari metode K-Nearest Neighbor.\",\"PeriodicalId\":31274,\"journal\":{\"name\":\"Inferensi Jurnal Penelitian Sosial Keagamaan\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inferensi Jurnal Penelitian Sosial Keagamaan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/j27213862.v2i1.6810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inferensi Jurnal Penelitian Sosial Keagamaan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j27213862.v2i1.6810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

肝脏或肝脏是人体最重要的器官。由于没有明显症状,肝脏疾病通常被认为是无声的杀手。问题是要及早发现肝病。即使这种疾病已经扩散,也很难察觉。然而,患者需要及早发现肝脏疾病的症状,以便立即进行治疗。早期诊断肝脏疾病可以改善患者的生存。在这项研究中,采用机械学习来对肝病进行分类,并将结果与经典方法进行比较。使用的数据是来自UCI机器学习的印度肝脏试验数据。有几个预先处理的阶段,包括检查价值缺失、移位、吸引力特征和处理反扫描数据的再样本。经过预后,随后使用物流方法、确定树、naivebayes、k-nearest neighbor和支持向量机进行分析。基于准确性和精度,然后SVM方法给出了最好的结果,但基于召回,然后K-Nearest方法给出了最好的结果。尽管SVM提供了最高精度和精确值的结果,但精度值和生成的召回值之间存在着巨大的不平等,相比于K-Nearest方法的准确性和召回值的差额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning
Liver atau hati adalah organ yang perannya sangat vital dalam tubuh manusia. Penyakit liver sering dianggap sebagai silent killer (pembunuh diam-diam) karena adanya kemungkinan tidak timbul gejala. Permasalahan yang terjadi adalah sulitnya mengenali penyakit liver sejak dini., bahkan saat penyakit ini sudah menyebar pun masih sulit untuk dideteksi. Padahal penderita perlu mengetahui adanya gejala penyakit liver sejak dini agar dapat segera melakukan pengobatan. Adanya diagnosa penyakit liver sejak dini mampu meningkatkan kelangsungan hidup pasien. Pada penelitian ini diterapkan metode untuk klasifikasi penyakit liver menggunakan machine learning dan dibandingkan hasilnya dengan metode klasik. Data yang digunakan adalah Indian liver patients dataset (ILPD)yang diambil dari UCI machine learning. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain pengecekan missing value, imputasi, feature selection, dan resampling untuk mengatasi data imbalance. Setelah dilakukan preprocessing, selanjutnya dilakukan analisis menggunakan metode regresi logistik, decision tree, naivebayes, k-nearest neighbor, dan support vector machine. Berdasarkan nilai akurasi dan presisi, maka metode SVM memberikan hasil yang terbaik, tapi berdasarkan recall maka metode K-Nearest Neighbor memberikan hasil terbaik. Walaupun SVM memberikan hasil nilai akurasi dan presisi tertinggi tetapi terdapat ketimpangan yang besar antara nilai presisi dan recall yang dihasilkan, jika dibandingkan selisih nilai akurasi dan recall dari metode K-Nearest Neighbor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信