A. Dozier, S. Suryanarayanan, Joseph P. Liberatore, Matthew C. Veghte
{"title":"Unscheduled Flow in Deregulated Electricity Markets: Bridging the Gap between the Western Electric Power Industry and Academia","authors":"A. Dozier, S. Suryanarayanan, Joseph P. Liberatore, Matthew C. Veghte","doi":"10.1109/GREENTECH.2013.75","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.75","url":null,"abstract":"Unscheduled power flows cause inequitable compensation of transmission infrastructure usage as well as a less reliable system. Accordingly, an unspecified amount of dollars in the United States are lost annually to unscheduled flows. A comprehensive survey of the literature on methods used to handle unscheduled flow in the market and the system is provided in this paper. Advantages and disadvantages are discussed with specific regard to the system and operating considerations within the Western Interconnection of the United States bulk electric system. Operating challenges within the Western Interconnection are briefly introduced. An action plan for including any of the proposed unscheduled flow mitigation mechanisms within the Western Interconnection is recommended, which includes guidance from a regulatory agency, infrastructure enhancements, and modeling efforts to determine associated impacts of the most promising methods prior to implementation.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116778110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid Storage System Power Optimization","authors":"Muhittin Yilmaz, P. Valluri, Sasikanth Pagadrai","doi":"10.1109/GREENTECH.2013.51","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.51","url":null,"abstract":"This paper investigates an energy-efficient hybrid storage system framework. An integer linear programming (ILP) approach is used to formulate power optimization frameworks for each individual storage system by separately developing appropriate system constants, binary decision variables, and associated constraints for a four power level Mobile Random Access Memory (MRAM) and a three power level Phase Change Memory (PCM). Subsequently, a hybrid configuration of MRAM and PCM storage systems is used to describe corresponding system variables and associated constraints under predefined power-level operation conditions to quantify actual power usage for programs with plausible execution patterns. The simulation result illustrates the efficiency of the proposed hybrid storage power optimization ILP framework.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125325094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Case Study on the Effects of Predicted Wind Farm Power Outputs on Unscheduled Flows in Transmission Networks","authors":"M. Mohanpurkar, S. Suryanarayanan","doi":"10.1109/GREENTECH.2013.50","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.50","url":null,"abstract":"The impact of forecasting error in wind power on unscheduled flows (USFs) is investigated here. Normal distribution is used to model the forecasting error distribution. Upper and lower bounds on wind farm output with a positive correlation of errors are obtained. Monte Carlo simulations using the interval forecasts of wind farm outputs are run to obtain interval branch flows. Ordinary least squares and ridge regression are used for the estimation of a mathematical artifact - minor loop flows - for accommodating USFs. Model adequacy and statistical inferences of the loop flow estimates is discussed. Impact of forecasting error on distributions of estimated loop flow is explored on the basis of Kolmogorov-Smirnov (KS) and chi-square goodness-of-fit tests.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122608566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Abid, A. Khallaayoun, H. Harroud, R. Lghoul, M. Boulmalf, D. Benhaddou
{"title":"A Wireless Mesh Architecture for the Advanced Metering Infrastructure in Residential Smart Grids","authors":"M. Abid, A. Khallaayoun, H. Harroud, R. Lghoul, M. Boulmalf, D. Benhaddou","doi":"10.1109/GREENTECH.2013.58","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.58","url":null,"abstract":"Future Smart Grids will consist of distributed Micro-Grids where the Advanced Metering Infrastructure (AMI) forms a central component. This consists basically of meters/sensors that are regularly communicating data towards/from a central Control Plane. Due to the ad-hoc topological nature of the meters/sensors, particularly in residential areas, Wireless Mesh Networks (WMNs) prove to be the ideal technology for AMI deployment. In this paper, we propose a wireless mesh network based architecture for AMI deployment that uses both Zigbee and IEEE 802.11. The paper presents the challenges and opportunity related to implementing such architecture in Moroccan market. This paper proposes a framework for renewable energy integration, and an appropriate Middleware design. The paper presents preliminary simulations on the wireless coexistence between the two technologies and draw conclusions on the channel to be used and node placement problems.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129721717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving the Power Quality of Traction Power Systems with a Single-Feeding Wire","authors":"Qing-Chang Zhong, Wen-Long Ming, M. Krstić","doi":"10.1109/GREENTECH.2013.43","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.43","url":null,"abstract":"A topology for traction power systems with a single feeding wire, which consists of a three-phase V/V transformer and a three-phase converter, is proposed at first and then a control strategy based on the repetitive control is developed to deal with the power quality issues in the system. Because of the repetitive controller, all the harmonic and negative-sequence currents generated by locomotives, which are single-phase nonlinear loads, are compensated and only the active power is drawn from the grid. Different from the commonly used hysteresis controllers in traction power systems, the repetitive controller has a fixed switching frequency, which reduces the stress on the power semiconductor devices. Simulation results are provided to illustrate the performance of the system.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126419202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Closed-Forms Solution for Simplified PV Modeling and Voltage Evaluation Including Irradiation and Temperature Dependence","authors":"A. Ginart, R. Riley, B. Hardman, Michael Ernst","doi":"10.1109/GREENTECH.2013.24","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.24","url":null,"abstract":"This paper presents a closed-form relation among voltage, current and power of PV cells. The methodology applied consists in a selective use of Taylor series with the purpose of obtaining a solvable analytical equation that presents similar results to the traditional numerical solution. This simplified solution enables an easier but precise evaluation of the PV voltage generated under specific conditions of temperature and solar radiance. The main benefit of this set of equations is the creation of a tool set that allows a precise evaluation of the yearly voltage profile based in PV datasheet and solar plant location. The expected yearly voltage profile provides valuable information in order to set the inverter voltage operation design in an optimal fashion for maximum yield benefits. These results may provide information valuable to compare and decide whether to install an inverter with or without a DC booster. The technique proposed in this work is validated by comparing the results of the set of equations derived with the traditional numerical solution and the PV manufactured values.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121770367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smart Meters in Smart Grid: An Overview","authors":"Jixuan Zheng, D. Gao, Li Lin","doi":"10.1109/GREENTECH.2013.17","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.17","url":null,"abstract":"Smart meter is one of the most important devices used in the smart grid (SG). The smart meter is an advanced energy meter that obtains information from the end users' load devices and measures the energy consumption of the consumers and then provides added information to the utility company and/or system operator. Several sensors and control devices, supported by dedicated communication infrastructure, are utilized in a smart meter. This paper outlines some smart meter's aspects and functions of smart meter. In addition, it introduces two basic types of smart meter system's communication technologies: Radio Frequency (RF) and Power Line Carrier (PLC) and recent advances with regard to these two technologies. This paper also presents different policy and current status as well as future projects and objectives of SG development in several countries. Finally, the paper compares some main aspects about latest products of smart meter from different companies.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128948616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Connection of an Offshore Wind Park to HVDC Converter Platform without Using Offshore AC Collector Platforms","authors":"H. Ahmad, S. Coppens, B. Uzunoğlu","doi":"10.1109/GREENTECH.2013.68","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.68","url":null,"abstract":"Several large scale offshore wind farms are planned to be built far from the shores in the future. High Voltage Direct Current (HVDC) Light by ABB is an effective and reliable way to integrate this large scale wind power production to the grid. An expensive component of offshore wind park HVDC Light technology is offshore AC collector platform. The AC collector platform in the offshore wind farm HVDC link contributes significantly to the cost of the overall project. This paper investigates the comparison between two different AC topologies of an offshore wind farm connection to offshore HVDC converter platforms with and without offshore AC collector platforms. The technical feasibility of the omission of an AC collector platform from offshore wind farms connection to HVDC converter platform is investigated for the first time. In the first topology, the offshore wind farms are connected to an HVDC converter platform through offshore AC collector platforms. An offshore AC collector platform is used to collect energy from the wind farm and step up the voltages for transmission to offshore HVDC converter platform. The offshore AC collector platforms contribute significantly to the total cost and technical complexity of the HVDC connection. In the second topology, the offshore AC collector platform is removed from the circuit and the offshore wind farms are connected directly to offshore HVDC converter platform. The topological alteration of an offshore wind farm HVDC link gives rise to some technical challenges. The short circuit analysis and annual energy loss analysis is performed for these two topologies. The type of wind turbine generators, internal wind farm voltages and the distance between the wind farms and offshore HVDC converter platform are quite important factors that are investigated in this study. The short circuit analysis and loss analysis is performed for two types of wind turbine generators i.e. doubly fed induction generators (DFIG) and full conversion (FC) generators. Two internal wind farm voltage levels i.e. 33 kV and 66 kV, and three different distances i.e. 1 km, 5 km, and 10 km between the wind farms and offshore HVDC converter platform are investigated.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132832754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the Impacts of Distribution Connected PV Using High-Speed Datasets","authors":"J. Bank, B. Mather","doi":"10.1109/GREENTECH.2013.31","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.31","url":null,"abstract":"High penetrations of distribution connected photovoltaic (PV) systems are becoming more common. However, the impact of these variable generators on system voltage and automatic voltage regulation equipment is not well quantified. In contrast to load which generally has some diversity, PV systems are often non-diverse over small geographic areas. Variability caused by PV can range from relatively slow changes in system voltage to high frequency impacts on real and reactive power. These changes have the ability to impact the operation of a distribution circuit from a protection, voltage control and load prediction/modeling point of view. This paper utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made. Additionally, the potential impacts of high-penetration PV on voltage regulation equipment such as capacitor banks and load tap changing transformers are quantified.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116990784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Practical Sizing Method of Energy Storage System Considering the Wind Uncertainty for Wind Turbine Generation Systems","authors":"D. Gao, H. Babazadeh, Li Lin","doi":"10.1109/GREENTECH.2013.27","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.27","url":null,"abstract":"In this paper, we introduce a new method for finding the proper size of energy storage system (ESS). This design is dedicated to reduce the size of ESS considering the uncertainty of wind speed. It considers the statistical behavior and also the state of charge (SOC) of ESS. The impact of wind uncertainty on power production and its impact on the SOC of ESS are studied. The optimization is done by using the defined uncertainty limits and some other criteria. The probability density function and cumulative density function are calculated in this method. The presented method provides a significant reduction in the size of ESS in terms of power and energy capacity which consequently reduces a considerable capital cost of ESSs for applications in wind turbine generators. The main goal of this design is to reduce the unnecessarily large capacity of ESS which causes the high cost of ESS.. All the calculations and plotting are done using MATLAB.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128596679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}