{"title":"Synthesis, Characterization and Investigation of Magnetic Properties of Co3O4/CoFe2O4 Nanocomposite Prepared by Calcination of [CO(SALEN)(PPH3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPH3)(H2O)]4[Fe(CN)6] Binary Complex Salts","authors":"A. Kianfar, N. Eskandari, M. A. Arayesh","doi":"10.47176/jame.39.2.19821","DOIUrl":"https://doi.org/10.47176/jame.39.2.19821","url":null,"abstract":"In this research the synthesis of [Co(Salen)(PPh3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPh3)(H2O)]4[Fe(CN)6] schiff base complexes was reported. Co3O4/CoFe2O4 magnetic nanoparticles were prepared by calcination of these complexes at 500, 550 and 600°C. Precursor complexes were identified by FT-IR and UV-Vis spectroscopy and their thermal behavior was studied via TG/DTA. Nanomagnetic samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy * یکینورتکلا تسپ ،تابتاکم لوئسم : : akianfar@cc.iut.ac.ir D ow nl oa de d fr om ja m e. iu t.a c. ir at 3 :4 4 IR S T o n S un da y N ov em be r 22 nd 2 02 0","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42120709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"سنتز نانوهرمهای وارونه سیلیکونی و مطالعه رفتار خود تمیزشوندگی آنها","authors":"فرناز منصوری, مهدیه مهران","doi":"10.47176/JAME.39.1.21201","DOIUrl":"https://doi.org/10.47176/JAME.39.1.21201","url":null,"abstract":"","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70773983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Annealing on Properties of Silicon Films Deposited By EB-PVD","authors":"میثم زرچی, شاهرخ آهنگرانی","doi":"10.47176/jame.39.1.10611","DOIUrl":"https://doi.org/10.47176/jame.39.1.10611","url":null,"abstract":": The structural and optical properties of polycrystalline silicon films obtained on a silicon wafer by electron beam physical vapor deposition (EBPVD), were studied in this paper. These films were initially amorphous and changed to a crystalline solid phase during annealing. Annealing was performed in an inert gas atmosphere tube furnace at different temperatures. Micro-structure of the films was analyzed to know the relationship between the crystalline / amorphous composition, grain size and characteristics of the films. The results showed a decrease in roughness with increasing annealing temperature and structural density. Moreover, results of Micro-Raman spectrum showed formation and increase of silicon nanocrystals in the annealed condition when the thickness of the coating increased due to structural defects","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43144289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. B. Tolou, H. S. Jazi, M. Kharaziha, N. Lisi, G. Faggio, A. Tamburrano
{"title":"Fabrication of Nerve Guide Conduit Based on 3D Graphene/ Polymer for Nerve Tissue Engineering","authors":"N. B. Tolou, H. S. Jazi, M. Kharaziha, N. Lisi, G. Faggio, A. Tamburrano","doi":"10.47176/jame.39.1.20571","DOIUrl":"https://doi.org/10.47176/jame.39.1.20571","url":null,"abstract":"In recent years, graphene has been considered in various tissue engineering applications such as nerve guide conduits because of its unique properties such as high electrical and mechanical properties, porous structure for exchange of nutritious and waste materials, biocompatible, capability of drug and growth factor delivery. In the current study, nerve guide conduits based on a 3D graphene were synthesized by induction heating chemical vapor deposition (ICVD). Graphene was synthesized on Ni foam template at 1080 Cͦ. Fabricated samples were characterized by Raman analysis and Scanning Electron Microscopy. Raman analysis showed that the synthesized graphene is in the form of a turbostratic multilayered graphene with little defects. Cyclododecane (CD) as a temporary protective layer was used to remove nickel. After removing nickel, the free-standing 3Dgraphene structure was coated with a polymer (PCL) by drop and dip coating methods to obtain the composite conduit. A comparison of the electromechanical results of the 3D-graphene/PCL conduit and PCL conduit indicated that firstly, grapheme increased the electrical conductivity of the composite conduit which will help promote nerve regeneration and axon growth. Secondly, tensile strength and flexibility of the 3D-graphene/PCL conduit was improved compared to the PCL conduit. .","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70773644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Plasma Electrolytic Oxidation Process as a Pretreatment on Corrosion Resistance of Polymeric Coatings Applied on Mg Alloy","authors":"M. T. Farani","doi":"10.47176/jame.39.1.21581","DOIUrl":"https://doi.org/10.47176/jame.39.1.21581","url":null,"abstract":"In this study, Plasma Electrolytic Oxidation (PEO) at three frequencies of 500, 1000 and 3000 Hz was applied on Mg surface and the effect of PEO surface preparation on protective behavior of three types of epoxy, fusion bond epoxy (FBE) and polyurethane coatings was investigated. The microstructural and protective properties of PEO coatings were studied by SEM, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the coating formed at frequency of 3000 Hz had smaller pore size and better protection properties. EIS test in 3.5 Wt.% NaCl solution was also used to investigate the protective behavior of the two-layered coatings. The results showed that PEO process had a favorable effect on the protective behavior of the polymer layers. Moreover, the best protection behavior was related to the PEO/FBE coating system.","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48894261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of HfB2 Powders by Carbothermal Reduction","authors":"M. Shirvani, M. Mashhadi, M. Yosofi","doi":"10.47176/jame.38.4.18782","DOIUrl":"https://doi.org/10.47176/jame.38.4.18782","url":null,"abstract":": In this research, solid state carbothermal synthesis of HfB 2 Nano powders was investigated. For this purpose, HfO 2 , H 3 BO 3 , carbon active or phenolic resin were used as raw materials for carbothermal reaction. After 2-4 hours of milling the raw materials by a planetary ball in an ethanol media, the mixture was heat dried and pressed in to disks under pressure of 20-30 bar. The disks were then placed in a graphite crucible and heat-treated at 1500–1600 °C for 1 hour under flowing Ar atmosphere. The powder product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and backscattered electron (BSE) imaging. The heat treatment temperature, amount of boric acid, milling and heat treatment time were recognized as four factors influencing synthesis and size of HfB 2 powder particles. SEM images reported irregular morphologies with a particle size of about 2-4 µm for HfB2 powder. The best sample was obtained at a molar ratio of HfO 2 : phenolic resin carbon: boric acid = 1:5:5 at 1600 °C after 1 hour of heat treatment. XRD results confirmed synthesis of pure HfB 2 with a crystallite size of about 60 nm.","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46413376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Characterization of Mechanical Behavior and Thermal Shock Resistance of Macro-Porous SiC Solar Absorber","authors":"A. R. Parvanian, H. Salimijazi, M. Fathi","doi":"10.47176/JAME.38.4.3721","DOIUrl":"https://doi.org/10.47176/JAME.38.4.3721","url":null,"abstract":"The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used in solar reactor is carried out. SiC foams were synthesized and categorized based on three different pore sizes * :يكينورتكلا تسپ ،تابتاكم لوئسم : hrjazi@cc.iut.ac.ir D ow nl oa de d fr om ja m e. iu t.a c. ir at 6 :2 8 IR D T o n W ed ne sd ay M ar ch 2 5t h 20 20","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44457529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}