{"title":"Developmental Cortical Plasticity in the Central Auditory System","authors":"Michele N. Insanally, R. Froemke","doi":"10.1093/OXFORDHB/9780190635374.013.1","DOIUrl":"https://doi.org/10.1093/OXFORDHB/9780190635374.013.1","url":null,"abstract":"The brain has a tremendous ability to change as a result of experience. While the brain is plastic throughout life, during early development, the nervous system seems much more sensitive to changes in neural activity or experience. During postnatal critical or sensitive periods, sensory experience can significantly restructure cortical networks, leading to long-term changes in central representations that can affect perception and behavior. This chapter reviews how the parameters of the acoustic environment and inhibitory circuitry can regulate cortical plasticity during early life experience. It highlights newly identified cortical circuit elements that are specifically recruited to engage critical-period plasticity mechanisms.","PeriodicalId":309448,"journal":{"name":"The Oxford Handbook of Developmental Neural Plasticity","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133075373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environmental Enrichment and Neuronal Plasticity","authors":"G. Clemenson, F. Gage, C. Stark","doi":"10.1093/OXFORDHB/9780190635374.013.13","DOIUrl":"https://doi.org/10.1093/OXFORDHB/9780190635374.013.13","url":null,"abstract":"This chapter reviews the literature on environmental enrichment and specifically discusses its influence on the hippocampus of the brain. In animal models, the term “environmental enrichment” is used to describe a well-defined manipulation in which animals are exposed to a larger and more stimulating environment. This experience has been shown to have a powerful and positive impact on hippocampal cognition and neuroplasticity in animals. In humans, however, the translation of environmental enrichment is less clear. Despite the fact that humans live considerably more enriching lives compared to laboratory animals, studies have shown that training and expertise (such as exercise and spatial exploration) can lead to both functional and structural changes in the human brain. This chapter is a comprehensive review of environmental enrichment, drawing parallels between animal models and humans to present a more complete understanding of environmental enrichment.","PeriodicalId":309448,"journal":{"name":"The Oxford Handbook of Developmental Neural Plasticity","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133221483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Warren, Stuart Dickens, S. Gigout, J. Fawcett, Jessica C. F. Kwok
{"title":"Regulation of CNS Plasticity Through the Extracellular Matrix","authors":"P. Warren, Stuart Dickens, S. Gigout, J. Fawcett, Jessica C. F. Kwok","doi":"10.1093/OXFORDHB/9780190635374.013.11","DOIUrl":"https://doi.org/10.1093/OXFORDHB/9780190635374.013.11","url":null,"abstract":"Contrary to established dogma, the central nervous system (CNS) has a capacity for regeneration and is moderately plastic. Traditionally, such changes have been recognized through development, but more recently, this has been documented in adults through learning and memory or during the advent of trauma and disease. One of the causes of such plasticity has been related to changes in the extracellular matrix (ECM). This complex scaffold of sugars and proteins in the extracellular space alters functionality of the surrounding tissue through moderation of synaptic connections, neurotransmission, ion diffusion, and modification to the cytoskeleton. This chapter discusses the role of the ECM in CNS plasticity in development and the adult. Further, it determines how the ECM affects normal neuronal functioning in critical processes such as memory. Finally, the chapter assesses how the ECM contributes to adverse CNS changes in injury and disease, concentrating on how this matrix may be targeted for therapeutic intervention.","PeriodicalId":309448,"journal":{"name":"The Oxford Handbook of Developmental Neural Plasticity","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126618117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmacological Manipulation of Critical Period Plasticity","authors":"R. Guirado, E. Castrén","doi":"10.1093/OXFORDHB/9780190635374.013.10","DOIUrl":"https://doi.org/10.1093/OXFORDHB/9780190635374.013.10","url":null,"abstract":"Neuronal networks are refined through an activity-dependent competition during critical periods of early postnatal development. Recent studies have shown that critical period plasticity is influenced by a number of environmental factors, including drugs that are widely used for the treatment of brain disorders. These findings suggest a new paradigm, where pharmacological treatments can be used to open critical period–like plasticity in the adult brain. The plastic networks can then be modified through rehabilitation or psychotherapy to rewire those abnormally wired during development. This kind of combination of pharmacotherapy with physical or psychological rehabilitation may open a new opportunity for a more efficient recovery of a number of neurological and neuropsychiatric disorders.","PeriodicalId":309448,"journal":{"name":"The Oxford Handbook of Developmental Neural Plasticity","volume":"15 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122478410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}