P. Warren, Stuart Dickens, S. Gigout, J. Fawcett, Jessica C. F. Kwok
{"title":"Regulation of CNS Plasticity Through the Extracellular Matrix","authors":"P. Warren, Stuart Dickens, S. Gigout, J. Fawcett, Jessica C. F. Kwok","doi":"10.1093/OXFORDHB/9780190635374.013.11","DOIUrl":null,"url":null,"abstract":"Contrary to established dogma, the central nervous system (CNS) has a capacity for regeneration and is moderately plastic. Traditionally, such changes have been recognized through development, but more recently, this has been documented in adults through learning and memory or during the advent of trauma and disease. One of the causes of such plasticity has been related to changes in the extracellular matrix (ECM). This complex scaffold of sugars and proteins in the extracellular space alters functionality of the surrounding tissue through moderation of synaptic connections, neurotransmission, ion diffusion, and modification to the cytoskeleton. This chapter discusses the role of the ECM in CNS plasticity in development and the adult. Further, it determines how the ECM affects normal neuronal functioning in critical processes such as memory. Finally, the chapter assesses how the ECM contributes to adverse CNS changes in injury and disease, concentrating on how this matrix may be targeted for therapeutic intervention.","PeriodicalId":309448,"journal":{"name":"The Oxford Handbook of Developmental Neural Plasticity","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Oxford Handbook of Developmental Neural Plasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFORDHB/9780190635374.013.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Contrary to established dogma, the central nervous system (CNS) has a capacity for regeneration and is moderately plastic. Traditionally, such changes have been recognized through development, but more recently, this has been documented in adults through learning and memory or during the advent of trauma and disease. One of the causes of such plasticity has been related to changes in the extracellular matrix (ECM). This complex scaffold of sugars and proteins in the extracellular space alters functionality of the surrounding tissue through moderation of synaptic connections, neurotransmission, ion diffusion, and modification to the cytoskeleton. This chapter discusses the role of the ECM in CNS plasticity in development and the adult. Further, it determines how the ECM affects normal neuronal functioning in critical processes such as memory. Finally, the chapter assesses how the ECM contributes to adverse CNS changes in injury and disease, concentrating on how this matrix may be targeted for therapeutic intervention.