{"title":"Effects of Stress Concentration on the Mechanical Properties of Carbon Fiber Reinforced Plastic","authors":"R. Naito, M. Okayasu, D. Fukuyama","doi":"10.20342/ijsmm.2.2.136","DOIUrl":"https://doi.org/10.20342/ijsmm.2.2.136","url":null,"abstract":"— Mechanical properties of conventional CFRP plates with small holes were investigated systematically. Those artificial holes are considered to be rivet connection between CFRP and other materials. The machining holes were employed with different number ( n =0-5) and different mode, e.g., parallel (Sample A), 45 degree (Sample B) and perpendicular (Sample C) against the loading direction. To understand the mechanical properties of the CFRP plates clearly, tensile tests and failure analysis were conducted experimentally. Excellent mechanical properties were obtained for Sample A, compared to the other ones. This is due to the different size of the cross-section area in the specimen. With increasing the number of rivet hole, the mechanical properties were lineally decreasing. Such mechanical properties were analyzed by direct observation using a high speed camera, i.e., in-situ measurement of deformation during the tensile loading was carried.","PeriodicalId":30772,"journal":{"name":"International Journal on Smart Material and Mechatronics","volume":"2 1","pages":"136-139"},"PeriodicalIF":0.0,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68298106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation and Experimental Works of Quadcopter Model for Simple Maneuver","authors":"R. Syam, Mustari","doi":"10.20342/IJSMM.2.1.33","DOIUrl":"https://doi.org/10.20342/IJSMM.2.1.33","url":null,"abstract":"This study aims to create a simulated and experimental of aircraft movements for multirotor quadcopter. The research method is theoretical and experimental methods. For theoretical method consists of calculating the dynamics and kinematics. While the experimental method consists of the aircraft testing and processing of GPS data recorded aircraft. The results showed that the acceleration acting on the aircraft is large enough that x ̈ = 1.751 m/s2, y = 2.038 m /s2 = 1.6371 m danz ̈ / s2, (2) the value of the maximum error between the theoretical and the actual movement is ex = 0.682 m; ey and ez = 0.353 m = 0.546 m. Theoretical movement pattern already resembles the actual movement..","PeriodicalId":30772,"journal":{"name":"International Journal on Smart Material and Mechatronics","volume":"3 1","pages":"29-33"},"PeriodicalIF":0.0,"publicationDate":"2014-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68297890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bicycle Frame Prediction Techniques with Fuzzy Logic Method","authors":"R. Syam, La Ode Asman Muriman","doi":"10.20342/IJSMM.2.1.38","DOIUrl":"https://doi.org/10.20342/IJSMM.2.1.38","url":null,"abstract":"—In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.","PeriodicalId":30772,"journal":{"name":"International Journal on Smart Material and Mechatronics","volume":"1 1","pages":"38-41"},"PeriodicalIF":0.0,"publicationDate":"2014-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68297989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot","authors":"R. Syam","doi":"10.20342/IJSMM.1.1.28","DOIUrl":"https://doi.org/10.20342/IJSMM.1.1.28","url":null,"abstract":"This study aims to design, and analyze a mobile robot that can handle some of the obstacles, they are uneven surfaces, slopes, can also climb stairs. WMR in this study is Tristar wheel that is containing three wheels for each set. On average surface only two wheels in contact with the surface, if there is an uneven surface or obstacle then the third wheel will rotate with the rotation center of the wheel in contact with the leading obstacle then only one wheel in contact with the surface. This study uses the C language program. Furthermore, the minimum thrust to be generated torque of the motor and transmission is 9.56 kg. The results obtained by calculation and analysis of DC motors used must have a torque greater than 14.67 kg.cm. Minimum thrust to be generated motor torque and the transmission is 9.56 kg. The experimental results give good results for robot to moving forward, backward, turn left, turn right and climbing the stairs","PeriodicalId":30772,"journal":{"name":"International Journal on Smart Material and Mechatronics","volume":"1 1","pages":"28-32"},"PeriodicalIF":0.0,"publicationDate":"2014-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68297840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}