J. Purnomo, Wong Foek Tjong, W. C. Wijaya, J. S. Putra
{"title":"Displacement and Stress Function-based Linear and Quadratic Triangular Elements for Saint-Venant Torsional Problems","authors":"J. Purnomo, Wong Foek Tjong, W. C. Wijaya, J. S. Putra","doi":"10.9744/CED.20.2.70-77","DOIUrl":"https://doi.org/10.9744/CED.20.2.70-77","url":null,"abstract":"Torsional problems commonly arise in frame structural members subjected to unsymmetrical loading. Saint-Venant proposed a semi inverse method to develop the exact theory of torsional bars of general cross sections. However, the solution to the problem using an analytical method for a complicated cross section is cumbersome. This paper presents the adoption of the Saint-Venant theory to develop a simple finite element program based on the displacement and stress function approaches using the standard linear and quadratic triangular elements. The displacement based approach is capable of evaluating torsional rigidity and shear stress distribution of homogeneous and nonhomogeneous; isotropic, orthotropic, and anisotropic materials; in singly and multiply-connected sections. On the other hand, applications of the stress function approach are limited to the case of singly-connected isotropic sections only, due to the complexity on the boundary conditions. The results show that both approaches converge to exact solutions with high degree of accuracy.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43076110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Particle Size Distribution of High Calcium Fly Ash on HVFA Mortar Properties","authors":"Antoni, H. Wibawa, D. Hardjito","doi":"10.9744/CED.20.2.51-56","DOIUrl":"https://doi.org/10.9744/CED.20.2.51-56","url":null,"abstract":"This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43608059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Putra, H. Yasuhara, N. Kinoshita, Erizal, Tri Sudibyo
{"title":"Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique","authors":"H. Putra, H. Yasuhara, N. Kinoshita, Erizal, Tri Sudibyo","doi":"10.9744/CED.20.2.91-95","DOIUrl":"https://doi.org/10.9744/CED.20.2.91-95","url":null,"abstract":"Several methods have been established for their various potential applications as soil improvement technique, and recently the application of grouting technique using biological process have been proposed. This study discussed the applicability of enzyme-mediated calcite precipitation (EMCP) in improving the shear strength parameters of sandy soil. In this study, soil specimens were prepared and treated with the grouting solutions composed of urea, calcium chloride, magnesium sulfate and enzyme of urease. Evolutions in the cohesion and internal friction angle of the improved soil were examined through the direct shear tests. The presence of the precipitated materials, comprising 4.1 percent of the soil mass of the treated sand, generated a cohesion of 53 kPa. However, contrary to the improvement of cohesion, the friction angle is relatively constant. It indicated that the application of the EMCP technique has no significant impact on the friction angle","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45673087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Prayogo, Jessica Chandra Sutanto, Hieronimus Enrico Suryo, Samuel Eric
{"title":"A Comparative Study on Bio-Inspired Algorithms in Layout Optimization of Construction Site Facilities","authors":"D. Prayogo, Jessica Chandra Sutanto, Hieronimus Enrico Suryo, Samuel Eric","doi":"10.9744/CED.20.2.102-110","DOIUrl":"https://doi.org/10.9744/CED.20.2.102-110","url":null,"abstract":"A good arrangement of site layout on a construction project is a fundamental component of the project’s efficiency. Optimization on site layout is necessary in order to reduce the transportation cost of resources or personnel between facilities. Recently, the use of bio-inspired algorithms has received considerable critical attention in solving the engineering optimization problem. These methods have consistently provided better performance than traditional mathematical-based methods to a variety of engineering problems. This study compares the performance of particle swarm optimization (PSO), artificial bee colony (ABC), and symbiotic organisms search (SOS) algorithms in optimizing site layout planning problems. Three real-world case studies of layout optimization problems have been used in this study. The results show that SOS has a better performance in comparison to the other algorithms. Thus, this study provides useful insights to construction practitioners in the industry who are involved in dealing with optimization problems","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48243100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One Dimensional Site Response Analysis of Liquefaction Potential along Coastal Area of Bengkulu City, Indonesia","authors":"L. Z. Mase","doi":"10.9744/CED.20.2.57-69","DOIUrl":"https://doi.org/10.9744/CED.20.2.57-69","url":null,"abstract":"This paper presents one dimensional non-linear site response analysis of liquefaction potential caused by the 2000 and the 2007 earthquakes in coastal area of Bengkulu City, Bengkulu, Indonesia. Site investigations, including Standard Penetration Test (SPT) and shear wave velocity (VS) measurement, were conducted in three locations along the coastal area of Bengkulu City. Further, the site investigation data were used in simulation of one-dimensional non-linear site response analysis by applying the synthetic ground motions at bedrock. The results show that liquefaction could happen at 0 to 1.5 m deep. This was indicated by the excess pore water pressure ratio (ru) which exceeded one. At depth between 1.5 m and 20 m, the excess pore water pressure almost reached the initial effective stress decreasing the effective confinement pressure close to zero. The results also indicated that liquefaction is possible to occur in this depth range if a stronger earthquake occurs.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49626823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Initial Surface Absorption of Cement Combination Concrete","authors":"Samuel Olufemi Folagbade","doi":"10.9744/CED.20.2.96-101","DOIUrl":"https://doi.org/10.9744/CED.20.2.96-101","url":null,"abstract":"This paper investigated the initial surface absorption (ISAT) of concrete using Portland cement (PC) and some binary and ternary cement combinations containing fly ash (FA), silica fume (SF) and metakaolin (MK) as partial replacements for PC at equal water/ cement ratios and strengths. At equal water/cement ratios, the cement combination concretes have higher ISAT values than PC concrete at 28 days and the disparity reduced with increasing curing age due to improved pozzolanic reactivity of the supplementary cementitious materials. SF and MK as binary and ternary cement components performed better than FA due to their higher fineness, improved particle packing and higher pozzolanic reactivity. At equal strengths, FA binary cement concretes have the lowest ISAT values and these reduced with increasing content of FA. At total replacement levels more than 20%, all the ternary cement concretes have lower ISAT values than PC concrete and the values reduced with increasing total replacement level due to the beneficial effect of FA.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44868946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Considering the Effect of Motorcyclist Risk Tolerance in Accident Risk Management: A Preliminary Study","authors":"S. Malkhamah, L. Suparma, D. G. N. D. Costa","doi":"10.9744/CED.20.2.78-85","DOIUrl":"https://doi.org/10.9744/CED.20.2.78-85","url":null,"abstract":"Negative perceptions about accident are usually associated with speeding behavior. However, risk perception has not been considered in accident risk management. It is accepted as a personality matter, thus the number of accidents per year was used as accident risk tolerance indicator. Consequently, due to insufficient measurable indicators, it would be difficult to prevent the increasing speeding behavior. This paper discusses the improvement of accident risk tolerance indicators, i.e. safety factor and margin of safety, and their possible usage in speed management policies. These indicators were built based on the correlation between the results of interview and braking maneuver test. From this combine approach, using aggregated-individual and expert acceptance models, it was found that risk tolerance arose because motorcyclists accepted both the advantages and disadvantages gained from speeding, obtained through their riding frequency, duration of riding and/or accident involvement experienced. However, inappropriate speed due to miss-perception toward braking capability should be avoided. Inversely, an appropriate speed management should consider their travelling expectation","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48129065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metaheuristic-Based Machine Learning System for Prediction of Compressive Strength based on Concrete Mixture Properties and Early-Age Strength Test Results","authors":"D. Prayogo","doi":"10.9744/CED.20.1.21-29","DOIUrl":"https://doi.org/10.9744/CED.20.1.21-29","url":null,"abstract":"Estimating the accurate concrete strength has become a critical issue in civil engineering. The 28-day concrete cylinder test results depict the concrete's characteristic strength which was prepared and cast as part of the concrete work on the project. Waiting 28 days is important to guarantee the quality control of the procedure, even though it is a slow process. This research develops an advanced machine learning method to forecast the concrete compressive strength using the concrete mix proportion and early-age strength test results. Thirty-eight historical cases in total were used to create the intelligence prediction method. The results obtained indicate the effectiveness of the advanced hybrid machine learning strategy in forecasting the strength of the concrete with a comparatively high degree of accuracy calculated using 4 error indicators. As a result, the suggested study can provide a great advantage for construction project managers in decision-making procedures that depend on early strength results of the tests .","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"20 1","pages":"21-29"},"PeriodicalIF":0.0,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44720162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin","authors":"Folagbade Samuel Olufemi","doi":"10.9744/CED.18.1.57-64","DOIUrl":"https://doi.org/10.9744/CED.18.1.57-64","url":null,"abstract":"The resistance to water penetration of cement combination concretes containing Portland cement (PC), fly ash (FA), and metakaolin (MK) have been investigated at different water/cement (w/c) ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2) contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"18 1","pages":"57-64"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71210272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guideline for Survey, Investigation, and Design of Black Spot Location (SID-BSL) and Its Application in Lampung Province, Indonesia","authors":"B. Susilo","doi":"10.9744/CED.18.1.49-56","DOIUrl":"https://doi.org/10.9744/CED.18.1.49-56","url":null,"abstract":"In connection with the government's obligation to take responsibility for ensuring the safety of traffic and road transport for road users, it is necessary to conduct Surveys, Investigations, and Design of Black Spot Location (SID-BSL) to reduce traffic accident. Hence a guideline in conducting SID-BSL is needed. In this study, the author compiled a simple technique of prioritization for SID-BSL procedure and applies it to a research on National Roads in the Lampung Province. The technique of prioritization is simplified with four phase activities namely Preparation, Initial Analysis, Detail Survey, and Detail Analysis. The analysis technique is based on the ranking of Black Spot Locations using weighted accident number (WAN). Application procedure is applied on 237 events of accident on the National Roads in Lampung Province resulting five selected BSLs to be treated according to the availability of funds.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"18 1","pages":"49-56"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71210265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}