基于位移和应力函数的Saint-Venant扭转问题线性单元和二次三角形单元

J. Purnomo, Wong Foek Tjong, W. C. Wijaya, J. S. Putra
{"title":"基于位移和应力函数的Saint-Venant扭转问题线性单元和二次三角形单元","authors":"J. Purnomo, Wong Foek Tjong, W. C. Wijaya, J. S. Putra","doi":"10.9744/CED.20.2.70-77","DOIUrl":null,"url":null,"abstract":"Torsional problems commonly arise in frame structural members subjected to unsym­metrical loading. Saint-Venant proposed a semi inverse method to develop the exact theory of torsional bars of general cross sections. However, the solution to the problem using an analytical method for a complicated cross section is cumbersome. This paper presents the adoption of the Saint-Venant theory to develop a simple finite element program based on the displacement and stress function approaches using the standard linear and quadratic triangular elements. The displacement based approach is capable of evaluating torsional rigidity and shear stress distribution of homogeneous and nonhomogeneous; isotropic, orthotropic, and anisotropic materials; in singly and multiply-connected sections.  On the other hand, applications of the stress function approach are limited to the case of singly-connected isotropic sections only, due to the complexity on the boundary conditions. The results show that both approaches converge to exact solutions with high degree of accuracy.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Displacement and Stress Function-based Linear and Quadratic Triangular Elements for Saint-Venant Torsional Problems\",\"authors\":\"J. Purnomo, Wong Foek Tjong, W. C. Wijaya, J. S. Putra\",\"doi\":\"10.9744/CED.20.2.70-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Torsional problems commonly arise in frame structural members subjected to unsym­metrical loading. Saint-Venant proposed a semi inverse method to develop the exact theory of torsional bars of general cross sections. However, the solution to the problem using an analytical method for a complicated cross section is cumbersome. This paper presents the adoption of the Saint-Venant theory to develop a simple finite element program based on the displacement and stress function approaches using the standard linear and quadratic triangular elements. The displacement based approach is capable of evaluating torsional rigidity and shear stress distribution of homogeneous and nonhomogeneous; isotropic, orthotropic, and anisotropic materials; in singly and multiply-connected sections.  On the other hand, applications of the stress function approach are limited to the case of singly-connected isotropic sections only, due to the complexity on the boundary conditions. The results show that both approaches converge to exact solutions with high degree of accuracy.\",\"PeriodicalId\":30107,\"journal\":{\"name\":\"Civil Engineering Dimension\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9744/CED.20.2.70-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9744/CED.20.2.70-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在承受非对称荷载的框架结构构件中,通常会出现扭转问题。Saint-Venant提出了一种半逆方法来发展一般截面扭杆的精确理论。然而,使用复杂横截面的分析方法来解决这个问题是麻烦的。本文采用Saint-Venant理论,使用标准线性和二次三角形单元,基于位移和应力函数方法,开发了一个简单的有限元程序。基于位移的方法能够评估均匀和非均匀的扭转刚度和剪切应力分布;各向同性、正交异性和各向异性材料;在单连通部分和多连通部分中。另一方面,由于边界条件的复杂性,应力函数方法的应用仅限于单连通各向同性截面的情况。结果表明,这两种方法都能以高精度收敛到精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Displacement and Stress Function-based Linear and Quadratic Triangular Elements for Saint-Venant Torsional Problems
Torsional problems commonly arise in frame structural members subjected to unsym­metrical loading. Saint-Venant proposed a semi inverse method to develop the exact theory of torsional bars of general cross sections. However, the solution to the problem using an analytical method for a complicated cross section is cumbersome. This paper presents the adoption of the Saint-Venant theory to develop a simple finite element program based on the displacement and stress function approaches using the standard linear and quadratic triangular elements. The displacement based approach is capable of evaluating torsional rigidity and shear stress distribution of homogeneous and nonhomogeneous; isotropic, orthotropic, and anisotropic materials; in singly and multiply-connected sections.  On the other hand, applications of the stress function approach are limited to the case of singly-connected isotropic sections only, due to the complexity on the boundary conditions. The results show that both approaches converge to exact solutions with high degree of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信