{"title":"Linguistic, cultural, and narrative capital: computational and human readings of transfer admissions essays.","authors":"A J Alvero, Jasmine Pal, Katelyn M Moussavian","doi":"10.1007/s42001-022-00185-5","DOIUrl":"https://doi.org/10.1007/s42001-022-00185-5","url":null,"abstract":"<p><p>Variation in college application materials related to social stratification is a contentious topic in social science and national discourse in the United States. This line of research has also started to use computational methods to consider qualitative materials, such as personal statements and letters of recommendation. Despite the prominence of this topic, fewer studies have considered a fairly common academic pathway: transferring. Approximately 40% of all college students in the US transfer schools at least once. One quirk of the system is that students from community colleges are applying for the same spots for students already enrolled in four year schools and trying to transfer. How might different aspects the transfer application itself correlate with institutional stratification and make students more or less distinguishable? We use a dataset of 20,532 transfer admissions essays submitted to the University of California system to describe how transfer applicants vary linguistically, culturally, and narratively with respect to academic pathways and essay prompts. Using a variety of methods for computational text analysis and qualitative coding, we find that essays written by community college students tend to be distinct from those written by university students. However, the strength and character of these results changed with the writing prompt provided to applicants. These results show how some forms of stratification, such as the type of school students attend, inform educational processes intended to equalize opportunity and how combining computational and human reading might illuminate these patterns.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42001-022-00185-5.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"5 2","pages":"1709-1734"},"PeriodicalIF":3.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33517693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Botometer 101: social bot practicum for computational social scientists.","authors":"Kai-Cheng Yang, Emilio Ferrara, Filippo Menczer","doi":"10.1007/s42001-022-00177-5","DOIUrl":"10.1007/s42001-022-00177-5","url":null,"abstract":"<p><p>Social bots have become an important component of online social media. Deceptive bots, in particular, can manipulate online discussions of important issues ranging from elections to public health, threatening the constructive exchange of information. Their ubiquity makes them an interesting research subject and requires researchers to properly handle them when conducting studies using social media data. Therefore, it is important for researchers to gain access to bot detection tools that are reliable and easy to use. This paper aims to provide an introductory tutorial of Botometer, a public tool for bot detection on Twitter, for readers who are new to this topic and may not be familiar with programming and machine learning. We introduce how Botometer works, the different ways users can access it, and present a case study as a demonstration. Readers can use the case study code as a template for their own research. We also discuss recommended practice for using Botometer.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"5 2","pages":"1511-1528"},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33444586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep diving into the S&P Europe 350 index network and its reaction to COVID-19.","authors":"Ariana Paola Cortés Ángel, Mustafa Hakan Eratalay","doi":"10.1007/s42001-022-00172-w","DOIUrl":"https://doi.org/10.1007/s42001-022-00172-w","url":null,"abstract":"<p><p>In this paper, we analyse the dynamic partial correlation network of the constituent stocks of S&P Europe 350. We focus on global parameters such as radius, which is rarely used in financial networks literature, and also the diameter and distance parameters. The first two parameters are useful for deducing the force that economic instability should exert to trigger a cascade effect on the network. With these global parameters, we hone the boundaries of the strength that a shock should exert to trigger a cascade effect. In addition, we analysed the homophilic profiles, which is quite new in financial networks literature. We found highly homophilic relationships among companies, considering firms by country and industry. We also calculate the local parameters such as degree, closeness, betweenness, eigenvector, and harmonic centralities to gauge the importance of the companies regarding different aspects, such as the strength of the relationships with their neighbourhood and their location in the network. Finally, we analysed a network substructure by introducing the skeleton concept of a dynamic network. This subnetwork allowed us to study the stability of relations among constituents and detect a significant increase in these stable connections during the Covid-19 pandemic.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"1343-1408"},"PeriodicalIF":3.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40564507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterizing the roles of bots on Twitter during the COVID-19 infodemic.","authors":"Wentao Xu, Kazutoshi Sasahara","doi":"10.1007/s42001-021-00139-3","DOIUrl":"https://doi.org/10.1007/s42001-021-00139-3","url":null,"abstract":"<p><p>An infodemic is an emerging phenomenon caused by an overabundance of information online. This proliferation of information makes it difficult for the public to distinguish trustworthy news and credible information from untrustworthy sites and non-credible sources. The perils of an infodemic debuted with the outbreak of the COVID-19 pandemic and bots (i.e., automated accounts controlled by a set of algorithms) that are suspected of spreading the infodemic. Although previous research has revealed that bots played a central role in spreading misinformation during major political events, how bots behavior during the infodemic is unclear. In this paper, we examined the roles of bots in the case of the COVID-19 infodemic and the diffusion of non-credible information such as \"5G\" and \"Bill Gates\" conspiracy theories and content related to \"Trump\" and \"WHO\" by analyzing retweet networks and retweeted items. We show the segregated topology of their retweet networks, which indicates that right-wing self-media accounts and conspiracy theorists may lead to this opinion cleavage, while malicious bots might favor amplification of the diffusion of non-credible information. Although the basic influence of information diffusion could be larger in human users than bots, the effects of bots are non-negligible under an infodemic situation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42001-021-00139-3.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"591-609"},"PeriodicalIF":3.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39386626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charalampos Ntompras, George Drosatos, Eleni Kaldoudi
{"title":"A high-resolution temporal and geospatial content analysis of Twitter posts related to the COVID-19 pandemic.","authors":"Charalampos Ntompras, George Drosatos, Eleni Kaldoudi","doi":"10.1007/s42001-021-00150-8","DOIUrl":"https://doi.org/10.1007/s42001-021-00150-8","url":null,"abstract":"<p><p>The COVID-19 pandemic has deeply impacted all aspects of social, professional, and financial life, with concerns and responses being readily published in online social media worldwide. This study employs probabilistic text mining techniques for a large-scale, high-resolution, temporal, and geospatial content analysis of Twitter related discussions. Analysis considered 20,230,833 English language original COVID-19-related tweets with global origin retrieved between January 25, 2020 and April 30, 2020. Fine grain topic analysis identified 91 meaningful topics. Most of the topics showed a temporal evolution with local maxima, underlining the short-lived character of discussions in Twitter. When compared to real-world events, temporal popularity curves showed a good correlation with and quick response to real-world triggers. Geospatial analysis of topics showed that approximately 30% of original English language tweets were contributed by USA-based users, while overall more than 60% of the English language tweets were contributed by users from countries with an official language other than English. High-resolution temporal and geospatial analysis of Twitter content shows potential for political, economic, and social monitoring on a global and national level.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"687-729"},"PeriodicalIF":3.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39557960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of social bots and humans during the COVID-19 pandemic.","authors":"Ho-Chun Herbert Chang, Emilio Ferrara","doi":"10.1007/s42001-022-00173-9","DOIUrl":"https://doi.org/10.1007/s42001-022-00173-9","url":null,"abstract":"<p><p>Using more than 4 billion tweets and labels on more than 5 million users, this paper compares the behavior of humans and bots politically and semantically during the pandemic. Results reveal liberal bots are more central than humans in general, but less important than institutional humans as the elite circle grows smaller. Conservative bots are surprisingly absent when compared to prior work on political discourse, but are better than liberal bots at eliciting replies from humans, which suggest they may be perceived as human more frequently. In terms of topic and framing, conservative humans and bots disproportionately tweet about the Bill Gates and bio-weapons conspiracy, whereas the 5G conspiracy is bipartisan. Conservative humans selectively ignore mask-wearing and we observe prevalent out-group tweeting when discussing policy. We discuss and contrast how humans appear more centralized in health-related discourse as compared to political events, which suggests the importance of credibility and authenticity for public health in online information diffusion.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"1409-1425"},"PeriodicalIF":3.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40585243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How he won: Using machine learning to understand Trump’s 2016 victory","authors":"Zhaochen He, J. Camobreco, K. Perkins","doi":"10.1007/s42001-021-00147-3","DOIUrl":"https://doi.org/10.1007/s42001-021-00147-3","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"24 1","pages":"905 - 947"},"PeriodicalIF":3.2,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73004473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OCR with Tesseract, Amazon Textract, and Google Document AI: a benchmarking experiment","authors":"Thomas Hegghammer","doi":"10.1007/s42001-021-00149-1","DOIUrl":"https://doi.org/10.1007/s42001-021-00149-1","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"78 3 1","pages":"861 - 882"},"PeriodicalIF":3.2,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77851846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining political interests of issue-motivated groups on social media: joint topic models for issues, sentiment and stance","authors":"Sandeepa Kannangara, W. Wobcke","doi":"10.1007/s42001-021-00146-4","DOIUrl":"https://doi.org/10.1007/s42001-021-00146-4","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"51 1","pages":"811 - 840"},"PeriodicalIF":3.2,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76405114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What race and gender stand for: using Markov blankets to identify constitutive and mediating relationships","authors":"Rafael Quintana","doi":"10.1007/s42001-021-00152-6","DOIUrl":"https://doi.org/10.1007/s42001-021-00152-6","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"86 1","pages":"751 - 779"},"PeriodicalIF":3.2,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72391155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}