2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)最新文献

筛选
英文 中文
Recording Neural Spikes Using Wireless Neurosensing System 使用无线神经传感系统记录神经尖峰
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385026
Carolina Moncion, I. S. B. Venkatakrishnan, A. Kiourti, J. R. Diaz, J. Volakis
{"title":"Recording Neural Spikes Using Wireless Neurosensing System","authors":"Carolina Moncion, I. S. B. Venkatakrishnan, A. Kiourti, J. R. Diaz, J. Volakis","doi":"10.1109/IMBIoC47321.2020.9385026","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385026","url":null,"abstract":"A wireless neurosensing system (WiNS) adapted with a novel impedance matching network is presented and validated. This system is used in vivo to record for the first time spontaneous neural unit activity from the hippocampus of a Wistar rat. These extracellular spikes offer valuable information. However, they are challenging to observe, even more so with previously reported neurosensing systems due to impedance mismatches with the required neural probes. The notable result demonstrated here employed (a) recently proposed technique for passive impedance matching, and (b) newly explored impedance reducing electrochemical probe coating method. The proposed technology has revolutionary potential in neurological research, particularly in epilepsy studies.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133571710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-substrate Microfluidic Systems on PET Film for mm-Wave Sensors 用于毫米波传感器的PET薄膜单基板微流控系统
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385043
Mario Mueh, P. Hinz, C. Damm
{"title":"Single-substrate Microfluidic Systems on PET Film for mm-Wave Sensors","authors":"Mario Mueh, P. Hinz, C. Damm","doi":"10.1109/IMBIoC47321.2020.9385043","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385043","url":null,"abstract":"A complementary approach to the fabrication of microfluidic systems is presented with the aim of reducing attenuation of resonator-based sensors in proximity of aqueous media. Contrary to state-of-the-art techniques, the channel system is dry-etched into a PET film, which also carries a functional RF metalization forming an array of split-ring resonators. This technique is easy to implement in standard micro-lithography and provides high flexibility in placement of the electrodes. Verified process parameters for etching depths up to $boldsymbol{13.5mu mathrm{m}}$. are presented together with a functional concept validation, comparing fullwave simulation results to a prototype device.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133645146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Frequency Dependent Response of Sinewave Electropermeabilization 正弦波电渗透的频率响应
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385025
T. Garcia-Sanchez, A. De Angelis, F. Apollonio, M. Liberti, L. Mir, C. Merla
{"title":"The Frequency Dependent Response of Sinewave Electropermeabilization","authors":"T. Garcia-Sanchez, A. De Angelis, F. Apollonio, M. Liberti, L. Mir, C. Merla","doi":"10.1109/IMBIoC47321.2020.9385025","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385025","url":null,"abstract":"The permeabilization of biological membranes by electric fields, known as electroporation and electropermeabilization, has been traditionally performed using square electric pulses. These signals distribute the energy in a wide frequency band. In this paper, authors investigate the use of sine waves, which are narrow band signals, to provoke electropermeabilization and the frequency dependence of this phenomenon. Single bursts of sine waves at different frequencies in the range from 8 kHz-130 kHz were applied to DC-3F cells. Electroporation was studied in the plasma membrane and the internal organelles membrane using calcium as a permeabilization marker. Additionally, a double-shell electrical model was simulated to give a theoretical framework to our results.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133681922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave bone imaging: experimental evaluation of calcaneus bone phantom and imaging prototype 微波骨成像:跟骨骨影及成像原型的实验评价
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385055
Bilal Amin, Colin Sheridan, Daniel Kelly, A. Shahzad, M. O’halloran, M. A. Elahi
{"title":"Microwave bone imaging: experimental evaluation of calcaneus bone phantom and imaging prototype","authors":"Bilal Amin, Colin Sheridan, Daniel Kelly, A. Shahzad, M. O’halloran, M. A. Elahi","doi":"10.1109/IMBIoC47321.2020.9385055","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385055","url":null,"abstract":"Microwave imaging (MWI) can be used as an alternate imaging modality for monitoring bone health. Evaluation and characterization of MWI prototype is a precursor step before in vivo investigation of bone dielectric properties. This paper presents experimental evaluation of a novel two layered simplified cylindrical shaped 3D printed human calcaneus bone phantom along with corresponding MWI prototype designed to image the bone phantom. The shape of the calcaneus bone was approximated with a cylinder. The external and internal layers represent cortical bone and trabecular bone respectively. Each layer of the phantom was filled with respective liquid tissue mimicking mixture (TMM). A MWI prototype was designed having six microstrip antennas in order to hold calcaneus bone phantom. The bone phantom was placed in the imaging prototype and scattered signals were measured at each antenna. Moreover, the performance of the system was explored by examining microwave measurement sensitivity. Based on the measured scattered signals the map of dielectric properties will be constructed by employing MWI algorithm and will be communicated in our future work. This two layered 3D printed human calcaneus bone phantom and imaging prototype can be used as a valuable test platform for pre-clinical assessment of calcaneus bone imaging for monitoring osteoporosis.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133039619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of Fundamental In-Body Radiation Limitations to Practical Design of Antennas for Implantable Bioelectronics 体内基本辐射限制在植入式生物电子学天线实际设计中的应用
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9384901
D. Nikolayev, W. Joseph, M. Zhadobov, L. Martens, R. Sauleau, A. Skrivervik
{"title":"Application of Fundamental In-Body Radiation Limitations to Practical Design of Antennas for Implantable Bioelectronics","authors":"D. Nikolayev, W. Joseph, M. Zhadobov, L. Martens, R. Sauleau, A. Skrivervik","doi":"10.1109/IMBIoC47321.2020.9384901","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9384901","url":null,"abstract":"Fundamental in-body limitations on achievable radiation efficiency could provide decision-making assistance to engineers working on antennas for implantable bioelectronics. In this study, proof-of-concept conformal microstrip antennas are proposed based on these theoretical foundations. In particular, maximizing the effective aperture and loading the antenna with materials having the permittivity higher than that of surrounding tissues is a promising solution for increasing the radiation efficiency. The operating frequencies are tuned to operate within the optimal range for deep-body implantation: 434, 868, and 1400 MHz. The achieved radiation efficiencies at these frequencies are 0.4%, 2.2%, and 1.2%, respectively, when simulated in a $phi boldsymbol{100}$ – mm spherical phantom with muscle-equivalent electromagnetic properties. The radiation performance at each frequency is compared to the fundamental limitations and closely approach them. Prototypes are characterized for the experimental validation.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125719482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planning Sine Waves Electroporation on Liposomes for Drug Delivery Application 规划正弦波电穿孔脂质体的药物递送应用
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9384905
L. Caramazza, A. De Angelis, M. Nardoni, P. Paolicelli, S. Petralito, F. Apollonio, M. Liberti
{"title":"Planning Sine Waves Electroporation on Liposomes for Drug Delivery Application","authors":"L. Caramazza, A. De Angelis, M. Nardoni, P. Paolicelli, S. Petralito, F. Apollonio, M. Liberti","doi":"10.1109/IMBIoC47321.2020.9384905","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9384905","url":null,"abstract":"Radiofrequency (RF) signals as a way to remotely control smart drug delivery nanocarriers represent a promising tool to overcome traditional therapeutic issues, such as overdosing therapeutic agents with a reduced efficacy and related side effects on healthy tissues, in order to obtain a targeted release near diseased cells. Aim of this work is to provide a deep investigation on the possible effect of sine wave RF signals, of 100 kHz and 10 MHz, applied to a non-uniform random distribution of 142 liposomes, as a realistic model of a biocompatible drug delivery suspension, to study electroporation mechanisms occurring during exposure.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"408 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125165227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and Characterization of a Metasurface Enhancement Plate for 3T MRI 3T MRI超表面增强板的设计与表征
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385046
Endri Stoja, S. Konstandin, R. Wilke, Dennis Philipp, R. Umathum, J. Jenne, Diego Betancourt, T. Bertuch, M. Günther
{"title":"Design and Characterization of a Metasurface Enhancement Plate for 3T MRI","authors":"Endri Stoja, S. Konstandin, R. Wilke, Dennis Philipp, R. Umathum, J. Jenne, Diego Betancourt, T. Bertuch, M. Günther","doi":"10.1109/IMBIoC47321.2020.9385046","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385046","url":null,"abstract":"A signal enhancement metasurface composed of a periodic linear alignment of closely–coupled wire resonators is proposed. It serves to locally enhance the radio frequency (RF) field in a specific region of interest for Magnetic Resonance Imaging (MRI). Electrical elongation by capacitive loading of the wires allows to adjust the resonance to an MR scanner's operating frequency of 123.5 MHz. Two prototypes are manufactured and characterized on-bench. MRI experiments allow to separate effects on the Tx/Rx fields showing an SNR enhancement factor up to 2.4.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131496276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of a Macromolecule Denaturation With Microwave Dielectric Spectroscopy based on Hydration Modifications 基于水化改性的微波介电光谱检测大分子变性
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385022
K. Grenier, G. Pratviel, Hugo Mazur, D. Dubuc
{"title":"Detection of a Macromolecule Denaturation With Microwave Dielectric Spectroscopy based on Hydration Modifications","authors":"K. Grenier, G. Pratviel, Hugo Mazur, D. Dubuc","doi":"10.1109/IMBIoC47321.2020.9385022","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385022","url":null,"abstract":"This paper focuses on demonstrating the possible detection with microwave dielectric spectroscopy of the hydration modification of a protein submitted or not to a chaotropic agent. The case study of the denaturation of the large BSA protein with urea is investigated. A hydration contrast is extracted from microwave measurements and presents a linear relationship with the concentration of the denaturing agent. This result demonstrates that microwave dielectric spectroscopy could contribute to evaluate intramolecular change of conformation (structuration/destructuration) of biomacromolecules based on hydration modifications.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134026622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time Quantitative Analysis of L-Lysine Based on Radio Frequency Sensing 基于射频传感的l-赖氨酸实时定量分析
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385024
Kunal Wadhwani, Sheena Hussaini, Syed Azeemuddin
{"title":"Real-time Quantitative Analysis of L-Lysine Based on Radio Frequency Sensing","authors":"Kunal Wadhwani, Sheena Hussaini, Syed Azeemuddin","doi":"10.1109/IMBIoC47321.2020.9385024","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385024","url":null,"abstract":"L–Lysine is an essential amino acid and bio–sample observing major significance in food processing, pharmaceutical and agricultural industries. Conventional sensing techniques require longer pre–processing times and are sensitive to ambient conditions. However, radio frequency (RF) sensing based on Complementary Split Ring Resonator (CSRR) exhibits a significant shift in the resonant frequency and is highly desirable for the L-Lysine's quantitative analysis. The frequency shifts of 498.4 MHz, 482.9 MHz, 471.4 MHz, 459.9 MHz and 452.3 MHz are obtained through varying concentrations from 0 mg/ml to 40 mg/ml in step size 10 mg/ml of L-Lysine solution. Therefore, experimental results and analysis presented in this work indicate the proposed radio frequency sensor's linearity in the above-reported concentration range.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128335913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Broadband Electrical Sensing of Nucleus Size in a Live Cell From 900 Hz to 40 GHz 900 ~ 40 GHz活细胞中细胞核大小的宽带电传感
2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) Pub Date : 2020-12-14 DOI: 10.1109/IMBIoC47321.2020.9385023
Xiaotian Du, Caroline Ladegard, Xiao Ma, Xuanhong Cheng, J. Hwang
{"title":"Broadband Electrical Sensing of Nucleus Size in a Live Cell From 900 Hz to 40 GHz","authors":"Xiaotian Du, Caroline Ladegard, Xiao Ma, Xuanhong Cheng, J. Hwang","doi":"10.1109/IMBIoC47321.2020.9385023","DOIUrl":"https://doi.org/10.1109/IMBIoC47321.2020.9385023","url":null,"abstract":"Live Jurkat cells were trapped by dielectrophoresis on a coplanar waveguide and the resulted changes in its reflection and transmission coefficients were measured from 900 Hz to 40 GHz. The measurement confirms that the decrease of nucleus size in a cell increases its impacts on both the reflection and transmission coefficients. Being fast, compact and label free, broadband electrical sensing may be used to detect other changes of the nucleus morphology and DNA content, which could be useful for cancer diagnosis.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116115021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信