{"title":"Phylogenetic relationships among subclades within the Trinity bristle snail species complex, riverine barriers, and re-classification","authors":"R. M. Sullivan","doi":"10.51492/CFWJ.CESASI.6","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.6","url":null,"abstract":"The Trinity bristle snail (Monadenia setosa) is listed as a threatened species under the California Endangered Species Act (CESA). In northern California, populations of this endemic terrestrial gastropod occur in rare, isolated, and highly fragmented locations within the greater Trinity Basin. Since 1952 when it was originally described, the taxonomic status of the Trinity bristle snail has been questioned based on unpublished information limited in geographic scope and sample size, which resulted in the taxon being reduced from species status (M. setosa) to subspecific status (M. i. setosa) within the Redwood sideband (M. infumata) species complex. Primary objectives of the present study were to: 1) use DNA extraction and PCR sequencing to gain insight into patterns of genetic variation and phylogenetic relationships among a larger sample of endemic populations of the Trinity bristle snail; 2) re-evaluate the systematic and taxonomic status of the species using outgroup analysis and references samples from sympatric ecologically co-occurring taxa within the genus Monadenia; and 3) evaluate the potential biogeographic effects of major riverine systems on genetic differentiation among relic and disjunct populations within the Trinity Basin. Results of the DNA sequence analysis using several different tree reconstruction methods revealed that subspecies of the Redwood sideband (M. i. subcarinata), Yellow-based sideband (M. i. ochromphalus), and the Trinity bristle (M. i. setosa) exhibited a phylogenetic signal at > 95% species probability. Except for the Yellow-based sideband, molecular evidence detected the presence of several morphologically cryptic subclades within each species clade formerly undescribed by the scientific community. Syntopic1 ecological relationships between subclades of the Trinity bristle snail and the Redwood sideband occurred in several areas within the geographic range of the Trinity bristle snail, which indicated that these subclades were conservatively differentiated at the subspecific level. A Bayesian coalescent tree showed that genetic variation 1 Syntopy refers to the joint occurrence of two species in the same habitat at the same time, which may result in hybridization between closely related taxa or sister species. In contrast, sympatric species occur together in the same region, but do not necessarily share the same localities as syntopic species do (Futuma 2009). among allopatric subclades of the Trinity bristle snail and the Redwood sideband were congruent with hydrological discontinuities associated with site-specific riparian stream corridors and the primary river systems within the Trinity Basin. Correlation analysis revealed a pattern of area effects, wherein sparsely bristled Trinity bristle snails were generally found to the northwest and more abundantly bristled individuals to the southeast in relation to primary river corridors that bisect the central Trinity Basin. A similar but opposite trend was obser","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70988664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Cypher, Scott E. Phillips, Tory L. Westall, Erin N. Tennant, L. Saslaw, Erica C. Kelly, Christine L. VanHorn Job
{"title":"Conservation of endangered Tipton kangaroo rats (Dipodomys nitratoides nitratoides): status surveys, habitat suitability, and conservation recommendations","authors":"B. Cypher, Scott E. Phillips, Tory L. Westall, Erin N. Tennant, L. Saslaw, Erica C. Kelly, Christine L. VanHorn Job","doi":"10.51492/CFWJ.CESASI.23","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.23","url":null,"abstract":"The Tipton kangaroo rat (Dipodomys nitratoides nitratoides; TKR) is listed as endangered both Federally and by the state of California due to profound habitat loss throughout its range in the southern San Joaquin Valley of California. Habitat loss is still occurring and critical needs for TKR include identifying occupied sites, quantifying optimal habitat conditions, and conserving habitat. Our objectives were to (1) conduct surveys to identify sites where TKR were extant, (2) assess habitat attributes on all survey sites, (3) generate a GIS-based model of TKR habitat suitability, (4) use the model to determine the quantity and quality of remaining TKR habitat, and (5) use these results to develop conservation recommendations. We surveyed for TKR on 44 sites by live-trapping and detected TKR on 15 sites. Sites with TKR tended to have larger alkali scalds and no obvious sign of past tilling compared to sites without TKR. Also, sites with TKR usually had relatively sparse ground cover and seepweed (Suaeda nigra) was present. The non-protected Heermann’s kangaroo rat (Dipodomys heermanni), a larger competitor, was either absent or present in relatively low numbers at sites with TKR, and when present its abundance was inversely related to that of TKR. Based on our habitat suitability modeling, an estimated 30,000 ha of moderately high or high quality TKR habitat and 60,000 ha of lower or medium quality habitat remain. However, habitat is still being lost and conversion of at least one survey site with TKR occurred during this project. Recommendations for TKR conservation are to (1) conduct additional TKR surveys on unsurveyed but suitable sites, (2) conserve suitable habitat on unprotected lands, (3) manage vegetation on occupied sites if necessary, (4) restore disturbed lands to increase suitability for TKR, and (5) research methods and conduct translocations of TKR to unoccupied sites with suitable habitat.","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49150105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Fleishman, T. George, Eric C. Hansen, Julie A. Heinrichs
{"title":"Development of ecologically meaningful, multiple-species conservation strategies under the California and U.S. Endangered Species Acts","authors":"E. Fleishman, T. George, Eric C. Hansen, Julie A. Heinrichs","doi":"10.51492/CFWJ.CESASI.3","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.3","url":null,"abstract":"The California and U.S. Endangered Species Acts prohibit take of protected species, but allow for authorization of take incidental to otherwise lawful activities provided the take is minimized and mitigated. Incomplete and inconsistent ecological information can limit the contribution of mitigation plans for incidental take, especially those for multiple species, to species persistence. Many such plans focus on acquisition and management of coarse-resolution land-cover or land-use types. These classifications may not coincide with a species’ resource requirements (its habitat) or the greatest constraints to its viability. Complementing acquisition with rigorous research on population biology, stressors, and habitat use and quality may be much more effective than preservation of putative but unproven habitat. Such adaptive conservation can be applied to species with restricted or extensive distributions. When the distribution and ecology of geographically restricted species are well-known, then connectivity analyses, sometimes complemented by spatially explicit, mechanistic population models, may inform habitat acquisition and management. When little information exists on the ecology or vital rates of a restricted species, we suggest assessment of occupancy, habitat use, or demography; tracking individuals’ movements; and evaluation of habitat quality. Acquisition and management of local lands that may not serve as habitat is unlikely to contribute to conservation of extensively distributed species with range-wide declines. Instead, we suggest that conservation efforts for these species emphasize strategic acquisition of open space (large, undeveloped areas that are more likely to serve as high-quality habitat), potentially in locations distant from the permit area. The above areas of research can inform optimization of conservation locations. Many mitigation decisions are based on assumptions drawn from limited data. Inclusion of scientific research in development and implementation of mitigation plans for incidental take can strengthen the plans’ information content, improve the ecological success acquisition and management, and advance conservation of protected species.","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45605612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terris Kasteen, Mark L. Allaback, David M. Laabs, Chad J. Mitcham, Kelli Camara, Chris Caris
{"title":"Salvage and translocation of endangered Santa Cruz long-toed salamander larvae","authors":"Terris Kasteen, Mark L. Allaback, David M. Laabs, Chad J. Mitcham, Kelli Camara, Chris Caris","doi":"10.51492/CFWJ.CESASI.12","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.12","url":null,"abstract":"","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45280380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trishelle Tempel, Timothy D. Malinich, Jillian M. Burns, Arthur Barros, Christina E. Burdi, J. Hobbs
{"title":"The value of long-term monitoring of the San Francisco Estuary for Delta Smelt and Longfin Smelt","authors":"Trishelle Tempel, Timothy D. Malinich, Jillian M. Burns, Arthur Barros, Christina E. Burdi, J. Hobbs","doi":"10.51492/CFWJ.CESASI.7","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.7","url":null,"abstract":"","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48132890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brian E. Hatfield, Julia M Runcie, Elizabeth A. Siemion, Cate B. Quinn, T. Stephenson
{"title":"New detections extend the known range of the state-threatened Sierra Nevada red fox","authors":"Brian E. Hatfield, Julia M Runcie, Elizabeth A. Siemion, Cate B. Quinn, T. Stephenson","doi":"10.51492/CFWJ.CESASI.26","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.26","url":null,"abstract":"","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48333113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Owens Valley nesting willow flycatcher under pressure","authors":"L. Greene, Elisabeth Otto, C. McCreedy","doi":"10.51492/CFWJ.CESASI.17","DOIUrl":"https://doi.org/10.51492/CFWJ.CESASI.17","url":null,"abstract":"Willow flycatchers (Empidonax traillii; WIFL) nest along the Owens River and Horton Creek in the Owens Valley. Migrating WIFL visit these sites as well as many other tributaries to both the Owens River and Mono Lake. We estimate there are approximately 35 WIFL territories in the Owens valley, or 5% of territories in California. Nesting WIFL in the Owens Valley are likely the federally endangered southwestern subspecies (E. t. extimus; SWIFL). The Chalk Bluff nesting site is particularly important as large nesting areas tend to be both rare and important for SWIFL and it contains more than half (63%) of all known WIFL territories in the region, which also represents 12% of all nesting SWIFL in California. Between 2014 and 2016, WIFL territory numbers declined from 37 to 27 across the three largest breeding sites. Territory numbers may have been influenced by drought conditions or brown-headed cowbird (Molothrus ater; BHCO) nest parasitism. In 2015 and 2016, comprehensive nest monitoring found nest parasitism rates were >40%, and nest success was lower in parasitized nests (16%; N = 5/31) compared with non-parasitized nests (60%; N = 31/52). BHCO management could potentially improve nest success for WIFL as well as many other open-cup nesting riparian birds in the Owens Valley.","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41750728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the distribution and abundance of larval Longfin Smelt: What can a larval monitoring program tell us about the distribution of a rare species?","authors":"Michael Eakin","doi":"10.51492/cfwj.cesasi.9","DOIUrl":"https://doi.org/10.51492/cfwj.cesasi.9","url":null,"abstract":"Following its listing as threatened under the California Endangered Species Act in 2009, Longfin Smelt (Spirinchus thaleichthys) became a focus of resource managers in the San Francisco Estuary. Water exports were identified as one of the factors affecting Longfin Smelt abundance, and managers were challenged with balancing freshwater flows through the Sacramento-San Joaquin River Delta between human and ecosystem needs. This balance becomes especially challenging during the winter and spring when Longfin Smelt are spawning. Resource managers identified that the impact associated with entrainment of larval Longfin Smelt in the winter was uncertain, and to understand and manage this risk, new data was needed. In 2009 the Smelt Larva Survey was implemented and has since sampled newly hatched larvae from January–March. Here, I analyze this data and ask specific questions regarding distribution and densities of the larvae throughout five regions of the Upper Estuary – Napa River, Suisun, Confluence, Northern Delta, and Southern Delta – with the goal of understanding the spatial and temporal patterns of larval distribution since 2009. I found that larvae were most prevalent in the Suisun, Confluence, and Northern Delta regions, and less common in the Southern Delta and Napa River regions. Larval Longfin Smelt densities changed following a recent drought and record low population abundances. Median per-station averaged densities ranged from 154 to 274 fish per 1,000 m3 between 2009 and 2013 but declined to 1 to 65 fish per 1,000 m3 from 2014 to 2019. This survey data demonstrates that Longfin Smelt reproductive output has declined since their listing in 2009 and that their distribution into the Southern Delta is low relative to the rest of the Upper Estuary. These results reaffirm the species’ continued decline since its listing, and that improving the abundance of spawning adults is one of the many important steps needed for long-term recovery and resilience.","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43777476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green Sturgeon (Acipenser medirostris) in the San Joaquin River, California: new record","authors":"Shaun T. Root, Z. Sutphin, Towns Burgess","doi":"10.51492/cfwj.106.22","DOIUrl":"https://doi.org/10.51492/cfwj.106.22","url":null,"abstract":"","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46481022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time series modeling and forecasting of a highly regulated riverine system: implications for fisheries management","authors":"R. M. Sullivan, J. Hileman","doi":"10.51492/cfwj.106.20","DOIUrl":"https://doi.org/10.51492/cfwj.106.20","url":null,"abstract":"","PeriodicalId":29697,"journal":{"name":"California Fish and Wildlife Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44813767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}