{"title":"Fault Diagnosis in Gas Lift System Using PDF Data","authors":"O. Adukwu","doi":"10.38032/jea.2023.02.001","DOIUrl":"https://doi.org/10.38032/jea.2023.02.001","url":null,"abstract":"Fault detection and isolation in the gas lift system were implemented assuming the gas lift variables are stochastic. Injection valve coefficient (Civ), production choke coefficient (Cpc), annulus pressure (Pa), and wellhead pressure (Pwh) were observed to show variations with faults presence. By simulating these gas lift variables as stochastic, the probability density function (PDF) data were used to generate decision functions for both the detection and isolation of the gas lift valve faults. The scheme accurately detected and isolated faults in the injection valve coefficient (Civ) and production choke coefficient (Cpc). The result of this diagnosis will aid the proper implementation of fault tolerant control in the gas lift system which will lead to its optimal operation.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"02 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130453230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Iftekharul Alam, Abidur Rahman Adib, Abdullah Al Rifat, Tafsirul Hassan, Md Mamunur Rahman
{"title":"Numerical Analysis on Cavitation-noise and Fluid-structure Interaction of AU-Outline GAWN Series and B-Series Marine Propellers","authors":"Md. Iftekharul Alam, Abidur Rahman Adib, Abdullah Al Rifat, Tafsirul Hassan, Md Mamunur Rahman","doi":"10.38032/jea.2023.01.005","DOIUrl":"https://doi.org/10.38032/jea.2023.01.005","url":null,"abstract":"Cavitation and cavitation-induced noise are harmful to both marine propellers and marine wildlife. Thus, it is required to reduce cavitation in marine propellers by developing the best design marine propellers. Moreover, proper material should be selected during the construction of marine propellers to withstand high-pressure loads. This paper presents an evaluation of the hydrodynamic characteristics such as cavitation and cavitation-induced noise of AU-outline GAWN series and B-series marine propellers at 0˚, 5˚, 10˚, and 15˚ rake angles using Computational Fluid Dynamics (CFD) analysis. Moreover, the study aims to find out the optimized propeller material among Nickel-Aluminum-Bronze (NAB), S2 glass, Aluminum 6061, and carbon fiber reinforced plastic (CFRP) materials. It is concluded that the lowest cavitation noises are 153.3 dB and 153.1 dB at a 10° rake angle for AU-outline GAWN series and B-Series marine propellers respectively. S2 glass is observed to be the optimum material at low rake angles, while CFRP is the optimum material at high rake angles compared to all other potential materials for both AU-outline GAWN series and B-series propellers.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124689966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Performance Evaluation of a Fixed Batch-type Pyrolysis Reactor for Bio-oil Production from Plastic Wastes","authors":"T. Mogaji, Anthony Omoaka, O. Z. Ayodeji","doi":"10.38032/jea.2023.01.004","DOIUrl":"https://doi.org/10.38032/jea.2023.01.004","url":null,"abstract":"A fixed bed batch-type bioreactor for pyrolyzing used or discarded plastic wastes was developed and its performance was evaluated. This research explored the option of converting the high-density polyethylene (HDPE) category of plastic wastes into useful bio-oil in the developed pyrolysis fixed-bed batch reactor. The developed 5 kg batch-type pyrolysis system powered by liquified petroleum gas (LPG) was designed and simulated with SolidWorks computer software to confirm its functionality, fabricated with locally sourced materials, and evaluated with HDPE plastic wastes sorted from dumpsites within the Akure metropolis. The developed reactor evaluation result justified that the pyrolysis reactor has the potential to produce 1.4575 kg of bio-oil per kilogram of liquefied petroleum gas (LPG) consumed. The pyrolytic oil obtained at pyrolysis temperature between 280oC-520oC in this work was thereafter assayed for its composition and fuel properties analyses. The results of the characterization indicated that the pyrolysis of plastic HDPE wastes is a good source of alternative fuel as it shows proximity to the physiochemical characteristics of conventional diesel.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123608293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of Parameters of Linear Quadratic Regulator using Global Best Inertia Weight Modified Particle Swarm Optimization Algorithm","authors":"Agbroko Oghenenyoreme Emakpo, Ogunti Erastus Olarewaju","doi":"10.38032/jea.2023.01.003","DOIUrl":"https://doi.org/10.38032/jea.2023.01.003","url":null,"abstract":"The characteristics of a linear Quadratic Regulator (LQR) are hinged upon two parameters and they are, the state weighting matrix Q and the Control weighting matrix R. In this study Global Best Inertia Weight modified variant of the particle swarm optimization algorithm was used to determine these two important parameters of an LQR which was then used to control a bus suspension system. The evaluation of the open loop and closed loop showed that the closed loop system attained a steady state in a time of 350.36 seconds compared to the open loop system (47,734.3 seconds) when both systems were subjected to pot hole (step) signal.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"313 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123227344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oluwafemi O. Omotayo, O. Ojuri, Oluwafemi O Olagunju
{"title":"Enhancing Geotechnical Properties of Lateritic Clay with Sawdust Ash-Lime Stabilizer","authors":"Oluwafemi O. Omotayo, O. Ojuri, Oluwafemi O Olagunju","doi":"10.38032/jea.2023.01.002","DOIUrl":"https://doi.org/10.38032/jea.2023.01.002","url":null,"abstract":"One important means of refining the geotechnical characteristics of soils is stabilization. This research sought to improve the geotechnical properties of lateritic clayey soil using sawdust ash-lime (SDAL) stabilizer. Soil-SDAL mixtures were made, after collecting lateritic clay samples and preparing mixtures of lime and sawdust ash in a ratio of 1:2. SDAL mixtures were added to the lateritic clay in increasing percentages from 0 to 10%. The materials’ index properties were determined, and compaction of the Soil-SDAL mixtures was done using four compactive efforts namely Reduced British Standard Light (RBSL), Standard Proctor (SP), West African Standard (WAS), and Modified Proctor (MP). Unconfined compressive strength (UCS) tests were performed on the Soil-SDAL mixtures as well. Results of the tests showed that the soil could be classified as an A-7-5(7) soil with a 13.7% plasticity index. The plasticity index increased with the addition of SDAL mixtures up to 6% after which there was a gradual decline. Meanwhile, maximum dry density (MDD) decreased while optimum moisture content (OMC) increased with SDAL addition. Unconfined compressive strength (UCS) of the soil increased from 38.58kN/m2 at 0% SDAL to a maximum of 129.63kN/m2 at 6% SDAL, after which there was a gradual decrease. Similar trends were noticed at all compactive efforts, indicating consistency in the performance of the stabilizer. Optimum results were achieved at 6% SDAL content, with Modified Proctor compactive effort giving the maximum value of 1,860kg/m3 MDD. The results prove that sawdust ash-lime mixture offers tremendous abilities in improving lateritic clay soil properties.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"52 Pt 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126241105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Empirical Path Loss Modelling for Selected LTE Networks in FUTA Campus, Ondo State, Nigeria","authors":"S. O. Oluwatoki, S. A. Busari, J. Popoola","doi":"10.38032/jea.2023.01.001","DOIUrl":"https://doi.org/10.38032/jea.2023.01.001","url":null,"abstract":"Deployed Long Term Evolution (LTE) networks in Nigeria can barely meet the desired 100 Mbps downlink throughput leading to unsatisfactory quality of experience by mobile users. Typically, mobile network operators (MNOs) rely on network planning tools designed for generalized environments. These tools employ legacy propagation models that may not be suited to the operational environments under consideration. As such, the efficiency of such legacy path loss models suffers when they are used in environments different from those for which they have been designed, and this poses a major challenge to the MNOs. This is because the Nigerian geographical areas and topographical features vary widely from the areas where the legacy models were developed. Several studies in Nigeria and other African countries have shown that the legacy path loss models perform unsatisfactorily when compared with field measurement data. To address this challenge and enable accurate path loss prediction for an urban campus environment, extensive measurements at 2600 MHz were carried out in the main campus of the Federal University of Technology Akure (FUTA), Ondo State, Nigeria. The measurement results were compared with the path loss predictions from the commonly-used legacy propagation models (Free space and 3GPP TR 36.873). The results show that the legacy path loss models under-predict the path loss averagely by 20-40 dB, and up to 88 dB in some cases, for the considered environment. Root mean square error (RMSE) values in the range of 1.895 and 9.159 were also observed along the routes. The measurement results will enable the MNOs to adjust the path losses in order to deliver improved quality of service.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"16 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124190631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature Effects on Optimal Performance of PV Module","authors":"T. Ale, K.J. Rotipin, Tolulope David Makanju","doi":"10.38032/jea.2022.04.004","DOIUrl":"https://doi.org/10.38032/jea.2022.04.004","url":null,"abstract":"The commonly used renewable energy source (RES) is solar energy. However, the production of this energy from PV modules has a lot of challenges and still needs technological improvement. This research investigates the effects of temperature on Photovoltaic (PV) module optimal performance. An experimental setup of a Monocrystalline (MC) module was used and data on the temperature and other parameters were measured using appropriate measuring tools. The relationship between module temperature and other parameters was evaluated using Pearson product correlation. The findings of this study showed that the temperature is significant for the Monocrystalline PV module to operate at its optimal. Also, the finding revealed that there is a weak correlation between the open circuit voltage (OCV) of the panel and the temperature, however, the PV module temperature has a strong and positive correlation with other parameters namely; solar irradiance, short circuit current (SCC), output power and conversion efficiency (CE) with a correlation coefficient (CC) of 0.94, 0.93, 0.92 and 0.93 respectively. The conversion efficiency of the PV module increases when its temperature is within the maximum operating temperature and tends to decrease when the temperature is beyond the design operating temperature of the module. This implies that temperature is also a key parameter to consider when designing a PV module system for optimal performance. This research recommends that temperature should be considered in the design of PV modules to power any equipment or machines for better performance.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130035963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Tasnim, Abu Salman Shaikat, Abdullah Al Amin, Molla Rashied Hussein, Md.Mizanur Rahman
{"title":"Design of a Smart Biofloc Monitoring and Controlling System using IoT","authors":"R. Tasnim, Abu Salman Shaikat, Abdullah Al Amin, Molla Rashied Hussein, Md.Mizanur Rahman","doi":"10.38032/jea.2022.04.003","DOIUrl":"https://doi.org/10.38032/jea.2022.04.003","url":null,"abstract":"In this paper, an IoT based real-time monitoring and controlling system have been designed and developed for an eco-friendly aquaculture system namely a biofloc fish farm. Currently, technology has a vital role in improving aquaculture production which leads to attaining sustainable development. The microorganisms in the biofloc fish tank are utilized for detoxifying the toxic waste materials by recycling as well as transforming them into fish food e.g. protein cells. Hence, it not only manages good water quality in the biofloc system but also produces additional feed for the fish. Water quality monitoring of biofloc fish tanks is a significant aspect to guarantee a better environment for producing fish. This paper focuses on developing an IoT based device for biofloc fish tanks to monitor various water quality parameters as well as control water temperature and air pump. Using this device, users can monitor the water quality data received from sensors and control the actuators accordingly from any remote location through the graphical user interface (GUI).","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116493125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation on Circular Array of Turbulent Impinging Round Jets at Confined Case: A CFD Study","authors":"S. Debnath, Md Tanvir Khan, Z. U. Ahmed","doi":"10.38032/jea.2022.04.002","DOIUrl":"https://doi.org/10.38032/jea.2022.04.002","url":null,"abstract":"Jet impingement has immense applications in industrial cooling, such as glass tempering, turbine blades, electrical equipment, etc. The interplay in-between several jet arrangements and the effect of swirl intensity require enormous study to achieve steady heat transfer. This paper numerically investigates an inline array of 25 circular confined swirling air jets impinging vertically on a flat surface. In this regard, three-dimensional simulations are executed using the finite volume method for a number of control parameters, such as Reynolds number (Re = 11600, 24600, and 35000), impinging distance (H/D = 0.25, 0.5, 1), swirl number (S = 0.3 and 0.75) and jet-to-jet separation distance (Z/D = 2.5), where, D is the nozzle diameter. Impinging pressure distribution, flow velocity, surface Nusselt number, and Reynolds stresses are investigated for different operating conditions. The results reveal that both the wall pressure and surface Nusselt number are comparatively uniform in the case of high swirl flow. Moreover, distinct heat transfer behavior is observed from the unconfined condition for high swirl flow in which the heat transfer is constant after a certain radial distance. The Reynolds normal stress adjacent to the nozzle exit is more rigorous than the downstream regions while Reynolds shear stress varies unpredictably along the radial direction. In addition, an estimated 102 % enhancement in average Nusselt number is observed for high swirl flow, at a Reynolds number increment from 11600 to 35000. This enhancement is evident by 23 % in terms of thermal performance factor. Besides, the average Nusselt number and thermal performance factor augmented by 19 % and 8 %, respectively, for an increased swirl intensity at low a Reynolds number (Re =11600).","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126007130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A GUI-Based Peg-Free Hand Geometry Recognition for Biometric Access Control using Artificial Neural Network","authors":"K. Adedeji, Oluwatimilehi A. Esan","doi":"10.38032/jea.2022.04.001","DOIUrl":"https://doi.org/10.38032/jea.2022.04.001","url":null,"abstract":"Hand geometry has been a widely used biometric authentication because it is generally believed that the human hand has sufficient anatomical features which could be used for personal identification. Many hand geometry systems use pegs, which guide hand placement on the scanner. The system prompts the user to position the hand on the scanner several times and only captures when the current position is satisfied. In such a system, measurements are not very precise and this reduces accuracy during feature extraction. The system also has a higher false acceptance rate. This paper presents a peg-free hand geometry recognition system that does not depend on the orientation of the hand. Several features from test hand images are extracted and stored in the database, which are used to train an artificial neural network (ANN). To facilitate easy usage of the hand geometry verification system (peg-free), a GUI was developed using MATLAB software. The developed system was validated and the overall result shows that the system can be used for biometric verification using hand geometry where the orientation and placement of the hand are not a necessity. The results show that the developed system performed better with a relatively low false acceptance rate and false rejection rate of 0.01% and 0.02% respectively. The system also has a lower mean square error of 8.84×10-5.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126840646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}