Temperature Effects on Optimal Performance of PV Module

T. Ale, K.J. Rotipin, Tolulope David Makanju
{"title":"Temperature Effects on Optimal Performance of PV Module","authors":"T. Ale, K.J. Rotipin, Tolulope David Makanju","doi":"10.38032/jea.2022.04.004","DOIUrl":null,"url":null,"abstract":"The commonly used renewable energy source (RES) is solar energy. However, the production of this energy from PV modules has a lot of challenges and still needs technological improvement. This research investigates the effects of temperature on Photovoltaic (PV) module optimal performance. An experimental setup of a Monocrystalline (MC) module was used and data on the temperature and other parameters were measured using appropriate measuring tools. The relationship between module temperature and other parameters was evaluated using Pearson product correlation. The findings of this study showed that the temperature is significant for the Monocrystalline PV module to operate at its optimal. Also, the finding revealed that there is a weak correlation between the open circuit voltage (OCV) of the panel and the temperature, however, the PV module temperature has a strong and positive correlation with other parameters namely; solar irradiance, short circuit current (SCC), output power and conversion efficiency (CE) with a correlation coefficient (CC) of 0.94, 0.93, 0.92 and 0.93 respectively. The conversion efficiency of the PV module increases when its temperature is within the maximum operating temperature and tends to decrease when the temperature is beyond the design operating temperature of the module. This implies that temperature is also a key parameter to consider when designing a PV module system for optimal performance. This research recommends that temperature should be considered in the design of PV modules to power any equipment or machines for better performance.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2022.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The commonly used renewable energy source (RES) is solar energy. However, the production of this energy from PV modules has a lot of challenges and still needs technological improvement. This research investigates the effects of temperature on Photovoltaic (PV) module optimal performance. An experimental setup of a Monocrystalline (MC) module was used and data on the temperature and other parameters were measured using appropriate measuring tools. The relationship between module temperature and other parameters was evaluated using Pearson product correlation. The findings of this study showed that the temperature is significant for the Monocrystalline PV module to operate at its optimal. Also, the finding revealed that there is a weak correlation between the open circuit voltage (OCV) of the panel and the temperature, however, the PV module temperature has a strong and positive correlation with other parameters namely; solar irradiance, short circuit current (SCC), output power and conversion efficiency (CE) with a correlation coefficient (CC) of 0.94, 0.93, 0.92 and 0.93 respectively. The conversion efficiency of the PV module increases when its temperature is within the maximum operating temperature and tends to decrease when the temperature is beyond the design operating temperature of the module. This implies that temperature is also a key parameter to consider when designing a PV module system for optimal performance. This research recommends that temperature should be considered in the design of PV modules to power any equipment or machines for better performance.
温度对光伏组件最佳性能的影响
常用的可再生能源(RES)是太阳能。然而,从光伏组件生产这种能源有很多挑战,仍然需要技术改进。本研究探讨温度对光伏组件最佳性能的影响。采用单晶(MC)模块的实验装置,采用合适的测量工具测量了温度和其他参数的数据。采用Pearson积相关法评价模块温度与其他参数之间的关系。本研究结果表明,温度对单晶光伏组件的最佳运行具有重要意义。此外,研究发现面板的开路电压(OCV)与温度之间存在弱相关性,而光伏组件温度与其他参数具有强的正相关性,即;太阳辐照度、短路电流(SCC)、输出功率和转换效率(CE)的相关系数(CC)分别为0.94、0.93、0.92和0.93。在最高工作温度范围内,光伏组件的转换效率呈上升趋势,超过组件设计工作温度后,转换效率呈下降趋势。这意味着在设计光伏组件系统以获得最佳性能时,温度也是一个需要考虑的关键参数。本研究建议在设计光伏组件时应考虑温度,以便为任何设备或机器供电,以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信