{"title":"A new cascade method for detecting GPS multiple outliers based on total residuals of observation equations","authors":"Yun Zhang, Falin Wu, H. Isshiki","doi":"10.1109/PLANS.2012.6236882","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236882","url":null,"abstract":"A technology of Receiver Autonomous Integrity Monitoring (RAIM) is developed to detect faults with redundant Global Position System (GPS) pseudorange measurements. Conventional RAIMs use only the residuals of the least square algorithm and can detect the single outlier with high probability, but they fail frequently to detect the multiple outliers correctly. This article develops a new cascade method to detect GPS multiple outliers. In the method, multiple outliers will be detected with several outlier searching steps. In the every step, LSM total residuals will be estimated after lowering of weight in wrong observations. The numerical results proved the effectiveness of the proposed cascade method.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122674916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical flow measurement of human walking","authors":"Qingwen Liu, O. Osechas, J. Rife","doi":"10.1109/PLANS.2012.6236926","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236926","url":null,"abstract":"This paper presents a method for using optical flow measurements to estimate stride length for pedestrian navigation applications. Optical flow sensors, such as the detectors used in an optical computer mouse, measure the velocity of visual features traversing an imaging array. We consider the case in which the optical flow sensor is attached to the leg of a pedestrian and used to infer distance traveled. In this configuration, optical flow data are a projection of the velocity and angular velocity of the leg to which the sensor is attached; a dynamic motion model is needed to estimate leg states and to infer stride length from the optical flow data. In this paper, we consider a very simple dynamic walking model, called the Spring Loaded Inverted Pendulum (SLIP) model. In a hardware-based trial, the basic SLIP model estimated stride length with 10% error. We anticipate that refinements to the basic SLIP model will enable more accurate stride-length estimation in the future.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116416566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Gentner, E. Muñoz, M. Khider, E. Staudinger, S. Sand, A. Dammann
{"title":"Particle filter based positioning with 3GPP-LTE in indoor environments","authors":"C. Gentner, E. Muñoz, M. Khider, E. Staudinger, S. Sand, A. Dammann","doi":"10.1109/PLANS.2012.6236895","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236895","url":null,"abstract":"Global navigation satellite systems (GNSSs) can deliver very good position estimates under optimum conditions. However, especially in urban and indoor scenarios with severe multipath propagation and blocking of satellites by buildings the accuracy loss can be very large. Often, a position with GNSS is impossible in these scenarios. On the other hand, cellular wireless communication systems such as the third generation partnership project (3GPP) long-term evolution (LTE) provide excellent coverage in urban and most indoor environments. Thus, this paper researches timing based positioning algorithms, in this case time difference of arrival (TDoA), using 3GPP-LTE measurements. Several approaches and algorithms exist to solve the navigation equation for cellular systems, for instance Bayes filtering methods such as Kalman or particle filter. This paper specifically considers and develops a particle filter for 3GPP-LTE TDoA positioning. To obtain better positioning results, a 3GPP-LTE TDoA error model is derived. This error model is afterwards included in the likelihood function of the particle filter. The last part of this paper, evaluates the positioning performances of the developed particle filter in an indoor scenario. These evaluations show clearly the possibility of using 3GPP-LTE measurements for indoor positioning.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125857485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Raitoharju, T. Fadjukoff, S. Ali-Loytty, R. Piché
{"title":"Using unlocated fingerprints in generation of WLAN maps for indoor positioning","authors":"M. Raitoharju, T. Fadjukoff, S. Ali-Loytty, R. Piché","doi":"10.1109/PLANS.2012.6236930","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236930","url":null,"abstract":"This paper presents five methods for generation of WLAN maps for indoor positioning using crowdsourced fingerprints. A fingerprint is assumed to contain identifiers of WLAN access points, received signal strength values and, if the fingerprint is collected outdoors, a GPS position. The proposed methods use the fingerprints' information to generate a WLAN map that contains estimated access point locations. Two of the proposed methods use RSS values in access point location estimation. In our evaluation with simulations and with real data, the Access Point Least Squares method, which does not use RSS information, is the fastest and its accuracy is as good as more complex methods that use RSS information.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128263833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using inertial sensors of iPhone 4 for car navigation","authors":"X. Niu, Quan Zhang, You Li, Yahao Cheng, C. Shi","doi":"10.1109/PLANS.2012.6236927","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236927","url":null,"abstract":"Smart phones start to equip with MEMS tri-axis accelerometer (i.e. G-sensor) and tri-axis gyroscope chips in recent years for user interface (UI) and game playing purposes. These two sensors actually compose a complete IMU and might be qualified as an INS to aid the GPS positioning of the phones, i.e. a GPS/INS integrated navigation system can be implemented. This paper explores the idea of using the inertial sensors in iPhone 4 from Apple Inc. to make GPS/INS integration for car navigation. A loosely-coupled integrated navigation algorithm with 15-states Kalman filter was used to fuse the data from the GPS and the MEMS inertial sensors. The results of road tests have shown that the MEMS sensors can bridge the GPS position gaps effectively, and can provide attitude estimation at degree level accuracy. The non-holonomic constraint can improve the navigation performance significantly, including both the position and heading. The attitude accuracy can reach the level of 1.4 degrees for tilt, and 2.0 degrees for heading. During the GPS signal outages (e.g. tunnel cases), the position drifts of the MEMS INS are at the level of 30 meters after 30 seconds, with the non-holonomic constraint. Results of this paper proved that the inertial sensors of iPhone 4 can be used for car navigation purpose. They can provide enhanced positioning capability and decent attitude estimation for various applications.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132208381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using the microsoft kinect for 3D map building and teleoperation","authors":"W. Woodall, D. Bevly","doi":"10.1109/PLANS.2012.6236847","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236847","url":null,"abstract":"This paper describes the use of the Microsoft Kinect for building three dimensional maps for use in teleoperation. Though these maps are being used for teleoperation in this paper, these map building techniques could also be applied in localization for navigation or robot path planning. The Kinect is a relatively new depth sensor that has become popular in the field of robotics, often replacing significantly more expensive systems like tilting laser range finders and stereoscopic vision systems. Two main sources of error in the map making are investigated, random and systematic error from the depth sensor and uncertainty in the navigation solution of the vehicle. Systematic and random error in the Kinect has previously been described in the literature [1] and this paper looks at how these errors affect the users ability to do mapping and offers some practical solutions. The teleoperation system design around this map making process is presented, and it builds on existing work [2] using octrees as the storage for the maps.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133714568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Nelson, K. Salit, J. Kriz, D. Sandquist, J. Sebby-Strabley
{"title":"Cold atom micro primary standard (CAMPS)","authors":"K. Nelson, K. Salit, J. Kriz, D. Sandquist, J. Sebby-Strabley","doi":"10.1109/PLANS.2012.6236853","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236853","url":null,"abstract":"We present progress towards a primary frequency standard with substantial reduction in size, weight, and power over the state of the art. Our clock is based on the microwave hyperfine transition in rubidium 87. Unique to this effort, our focus is on special design considerations and engineering trades to realize a primary frequency standard in an ultimate 5 cc form factor, with 50 mW power consumption, and which is compatible with a robust, high-volume manufacturing process. In our approach, atoms are laser cooled from a background vapor into a magneto-optical trap. The magnetic and optical trapping forces are extinguished, allowing the atoms to freely expand, and Ramsey spectroscopy is performed to measure the clock transition between the F = 1 and F = 2 hyperfine states. Key to size reduction is the use of laser cooled atoms to achieve narrow line widths in a small size, and the ability to perform all the clock functions (sample preparation, spectroscopy, and read-out) in one physical location. Using a miniaturized physics package, signal-to-noise ratios greater than 100 and clock line quality factors greater than 1E+8 have been achieved. We also discuss limiting factors and prospects for improvement.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129303285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrity risk of cycle resolution in the presence of bounded faults","authors":"S. Khanafseh, M. Joerger, B. Pervan","doi":"10.1109/PLANS.2012.6236941","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236941","url":null,"abstract":"This paper introduces a method to compute an upper bound on the integrity risk of cycle resolution in the presence of bounded measurement errors and faults. In high accuracy applications such as shipboard landing and autonomous airborne refueling, carrier phase cycle ambiguities must be estimated and resolved as integers (or `fixed ambiguities'). In applications that also demand high integrity, the cycle resolution process must comply with a fault-free integrity risk requirement. Under normal error conditions, fault-free integrity risk can readily be quantified using existing cycle resolution methods; this is true even in the presence of known measurement biases. However, evaluating the integrity risk of a cycle resolution process under fault hypotheses has not yet been addressed. In the case of rare-event measurement faults such as satellite failures and atmospheric anomalies, the magnitude of the fault is never exactly known, but it can often be bounded. The bound can either be a result of a monitor's minimum detectable error, from extensive data analysis, or even from physical limitation. In this paper, we develop a method to account for these bounded errors in the computation of the integrity risk for navigation systems that rely on fixed carrier phase cycle ambiguities.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130786558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical modeling of rate gyros and accelerometers","authors":"Richard J. Vaccaro, Ahmed S. Zaki","doi":"10.1109/PLANS.2012.6236962","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236962","url":null,"abstract":"Gyroscopes and accelerometers are important components of inertial measurement units (IMUs), which are used for guidance and stabilization of many platforms. Two important statistical parameters that influence the performance of inertial sensors are the spectral densities R and Q of the additive noise and random drift components, respectively. Previous work on the modeling of inertial sensors is based on computing the Allan variance of a sensor signal and fitting the result with two lines, one for R and the other for Q. It is shown in this paper that the line for Q is often inaccurate. This paper provides a statistical algorithm for jointly estimating Q and R. The performance of the algorithm is demonstrated using simulated data. A bound on the error in the integral of a gyro output, as a function of Q and R, is derived, as is a bound on the error in the double integral of an accelerometer output.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130508505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John-Olof Nilsson, D. Zachariah, M. Jansson, P. Handel
{"title":"Realtime implementation of visual-aided inertial navigation using epipolar constraints","authors":"John-Olof Nilsson, D. Zachariah, M. Jansson, P. Handel","doi":"10.1109/PLANS.2012.6236948","DOIUrl":"https://doi.org/10.1109/PLANS.2012.6236948","url":null,"abstract":"A real-time implementation and the related theory of a visual-aided inertial navigation system are presented. The entire system runs on a standard laptop with off-the-shelf sensory equipment connected via standard interfaces. The visual-aiding is based on epipolar constraints derived from a finite visual memory. The navigational states are estimated with a square-root sigma-point Kalman filter. An adaptive visual memory based on statistical coupling is presented and used to store and discard images selectively. Timing and temporal ordering of sensory data are estimated recursively. The computational cost and complexity of the system is described, and the implementation is discussed in terms of code structure, external libraries, and important parameters. Finally, limited performance evaluation results of the system are presented.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130539411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}