Chemical PhysicsPub Date : 2025-03-07DOI: 10.1016/j.chemphys.2025.112681
Wenyu Fang, Sheng-an Chen, Kai Jin
{"title":"Two-dimensional Lorandite with high-efficiency photocatalytic water splitting: Insights from ab initio calculations","authors":"Wenyu Fang, Sheng-an Chen, Kai Jin","doi":"10.1016/j.chemphys.2025.112681","DOIUrl":"10.1016/j.chemphys.2025.112681","url":null,"abstract":"<div><div>Photocatalytic water splitting (PWS) plays a crucial role in clean energy generation and environmental protection. In this study, we identified that single-layer Lorandite (TlAsS<sub>2</sub>) can be experimentally synthesized due to its low cleavage energy (0.33 J/m<sup>2</sup>) and high stability. Notably, TlAsS<sub>2</sub> possesses suitable electronegativity (5.06 eV) and a band gap of 2.56 eV, making it a viable candidate for PWS devices. Additionally, single-layer exhibits an electron mobility of 209.83–600.14 cm<sup>2</sup>/Vs, much higher than the hole mobility of 42.07–52.02 cm<sup>2</sup>/Vs. Also, it demonstrates a strong absorption coefficient (∼10<sup>5</sup> cm<sup>−1</sup>), effectively covering both visible and ultraviolet light, resulting in a desirable light absorption efficiency of 39 %. In conclusion, single-layer TlAsS<sub>2</sub> is a highly promising candidate for optoelectronic and PWS applications due to its favorable electronic properties, light absorption capabilities and overall PWS efficiency.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112681"},"PeriodicalIF":2.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical insights into the initial thermolysis reactions of [2,2’-bi(1,3,4-oxadiazole)]-5,5’-dinitramide (ICM-101) from quantum chemical modeling","authors":"Shuangfei Zhu, Shufen Zheng, Zixuan Yang, Shuhai Zhang, Ruijun Gou, Yahong Chen","doi":"10.1016/j.chemphys.2025.112684","DOIUrl":"10.1016/j.chemphys.2025.112684","url":null,"abstract":"<div><div>ICM-101 exhibits the density and detonation performance comparable to CL-20, however the atomistic details of its decomposition still remain lacking. Density functional theory and coupled-cluster theory were utilized to study the unimolecular decomposition of ICM-101 in this work. The detailed primary decay reactions map was presented, and results of thermochemistry calculations showed that the preferred decomposition path of ICM-101 is the oxidation of C atom by nitro group, which is a universal decay path in a range of energetic molecules. Furthermore, we found the reversible H transfer and bond rotation reactions for ICM-101 decay, in which bond rotation reaction was proposed as a new sensitivity mechanism. The bond rotation reaction takes place with a low energy barrier, and the product could return back to original molecule with a low barrier. Those findings could contribute to a deep understating of the sensitivity and safety of energetic materials.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112684"},"PeriodicalIF":2.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-03-05DOI: 10.1016/j.chemphys.2025.112682
Nikhil S. Samudre , Rukminesh Tiwari
{"title":"Evaluating the catalytic potential of Lithium-decorated graphene quantum dots for small molecule activation","authors":"Nikhil S. Samudre , Rukminesh Tiwari","doi":"10.1016/j.chemphys.2025.112682","DOIUrl":"10.1016/j.chemphys.2025.112682","url":null,"abstract":"<div><div>The search for effective catalysts in small molecule activation has intensified as industries seek efficient and cost-effective solutions. Lithium (Li), known for its unique electronic properties, is of significant interest as a catalyst. However, its specific catalytic potential when anchored on graphene quantum dots (GQDs) has not been fully explored. This study investigates the catalytic potential of lithium (Li) adatoms on GQDs with various edge conformations (zigzag and armchair) and sizes (24 and 42 atoms). Using density functional theory (DFT), we examine the interactions of Li-decorated GQDs with small molecules such as H<sub>2</sub>, N<sub>2</sub>, CO, O<sub>2</sub>, and CO<sub>2</sub>. Our findings reveal that Li-GQD complexes exhibit optimal catalytic activity for all these molecules, based on binding energy, charge distribution, and bond length changes. The smallest GQD, coronene (24 carbon atoms), shows the most promising catalytic activity, providing experimental leads for synthesizing and testing efficient Li-anchored catalysts.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112682"},"PeriodicalIF":2.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-03-04DOI: 10.1016/j.chemphys.2025.112683
Ming Meng , Shiwen Lv , Yi Song , Ying Wang , Yanling Hao , Yun Shan
{"title":"Electronic state reconfiguration induced by structural deformation at ultrathin non-van der Waals metal oxides to accelerate oxygen evolution reaction","authors":"Ming Meng , Shiwen Lv , Yi Song , Ying Wang , Yanling Hao , Yun Shan","doi":"10.1016/j.chemphys.2025.112683","DOIUrl":"10.1016/j.chemphys.2025.112683","url":null,"abstract":"<div><div>Electrochemical water splitting plays a critical role in developing new-type energy conversion devices, but has to face the technological bottleneck of slow anodic oxygen evolution reaction (OER). Herein, we propose an intriguing structural deformation strategy to reconfigure the electronic states at the ultrathin non-van der Waals metal oxides for facilitating the reaction kinetics of OER, in which half-filling 3d orbitals at magnetic sites will be more localized by compressive deformation and then enforce their bonding interaction and charge transfer with the intermediates. Compared with the traditional bulk materials surfaces, these ultrathin non-van der Waals metal oxides show reactive activity more sensitive to the external strain, because they have stronger interatomic interactions. The relevant analysis about d-band center and work functions all demonstrate that the exfoliation of non-van de Waals catalysts from their bulk materials have obvious advantage in improving the reactive activity.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112683"},"PeriodicalIF":2.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-03-04DOI: 10.1016/j.chemphys.2025.112663
Alberto G. Albesa
{"title":"Nanopore conductance controlled by pH: A Poisson–Nernst–Planck–Navier–Stokes model with polymer brushes","authors":"Alberto G. Albesa","doi":"10.1016/j.chemphys.2025.112663","DOIUrl":"10.1016/j.chemphys.2025.112663","url":null,"abstract":"<div><div>This theoretical study models pH-dependent ionic transport in nanopores modified with poly(4-vinylpyridine) (P4VP) brushes using the Poisson–Nernst–Planck–Navier–Stokes equations. We demonstrate how protonation of polymer segments influences nanopore conductance under varying pH conditions. The model accurately predicts ionic conductance as a function of pH, showing excellent agreement with experimental data. A direct relationship is established between the degree of polymer dissociation and conductance, revealing how physicochemical interactions affect ionic distribution and local pH within the nanopore. These insights provide a solid theoretical basis for designing pH-sensitive nanofluidic devices.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112663"},"PeriodicalIF":2.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-03-01DOI: 10.1016/j.chemphys.2025.112665
Shilan Aziz Mohammed , Nzar Rauf Abdullah
{"title":"DFT and AIMD study of 2D Li2O2: Stability, electronic, magnetic, thermal, and optical properties","authors":"Shilan Aziz Mohammed , Nzar Rauf Abdullah","doi":"10.1016/j.chemphys.2025.112665","DOIUrl":"10.1016/j.chemphys.2025.112665","url":null,"abstract":"<div><div>We employ density functional theory to examine the structural, stability, electronic, magnetic, thermal, and optical properties of two atomic configurations of lithium peroxide with hexagonal lattice and decorated hexagonal lattice identifying as Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-1 and Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-2, respectively, within the <span><math><mrow><mi>P</mi><msub><mrow><mn>6</mn></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo><mi>m</mi><mi>m</mi><mi>c</mi></mrow></math></span> space group. Although part of the same crystallographic group, these two atomic configurations give rise to diverse physical properties. Examining the phonon band structure indicates that Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-1 is dynamically unstable, whereas Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-2 exhibits dynamic stability. The calculations of formation energy and ab-initio molecular dynamics simulations validate the energetic and thermal stability, respectively. Electronic structure computations using both GGA/PBE and HSE06 functional reveal that both structures are semiconductors, with Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-2 displaying a broader band gap than Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-1 due to less symmetry of Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-2, and neither configuration exhibits magnetic ordering. Optical analyses indicate that both structures exhibit transparency in the visible spectrum with minimal optical conductivity. However, Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-2 shows enhanced refractive indices and reflectivity in the ultraviolet range. Heat capacity trends indicate similar thermal characteristics, with Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-2 demonstrating somewhat improved heat absorption at higher temperatures. The findings underscore the promise of both configurations, especially Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112665"},"PeriodicalIF":2.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-02-26DOI: 10.1016/j.chemphys.2025.112660
Nguyen T. Hiep , Vo Q. Nha , Le D. Hieu , Bui D. Hoi , Nguyen P.Q. Anh , Huynh V. Phuc , Cuong Q. Nguyen , Nguyen N. Hieu
{"title":"Novel Janus Co3GeXTe (X= S, Se) monolayers with high structural stability: First-principles predictions","authors":"Nguyen T. Hiep , Vo Q. Nha , Le D. Hieu , Bui D. Hoi , Nguyen P.Q. Anh , Huynh V. Phuc , Cuong Q. Nguyen , Nguyen N. Hieu","doi":"10.1016/j.chemphys.2025.112660","DOIUrl":"10.1016/j.chemphys.2025.112660","url":null,"abstract":"<div><div>This study attempts to construct two-dimensional (2D) Janus Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te (<span><math><mrow><mi>X</mi><mo>=</mo></mrow></math></span> S and Se) monolayers from the original Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> based on first-principles predictions for new magnetic materials. The optimized Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe configurations show hexagonal structures with honeycomb lattices from Co and Te atoms. Then their stabilities are investigated to evaluate the feasibility of synthesizing the Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te materials by experiments. From the phonon dispersion spectra, all three monolayers expose eighteen positive phonon modes without any imaginary frequency. This implies that the Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te structures are dynamically stable. Only small total energy fluctuations and no structure fracture/reconstruction are observed after the <em>ab initio</em> molecular dynamics tests, revealing the high thermal stability of the Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te systems. Besides, the Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers have high negative <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>coh</mi></mrow></msub></math></span> of about <span><math><mrow><mo>−</mo><mn>5</mn></mrow></math></span> eV/atom and the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>66</mn></mrow></msub></math></span> elastic constants obey the condition of Born and Huang for mechanical stability. According to the Poisson’s ratio and Young’s modulus polar diagrams, the isotropic elastic properties are found in all three Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe monolayers. The obtained evidence indicates the good stabilities of t","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112660"},"PeriodicalIF":2.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-02-25DOI: 10.1016/j.chemphys.2025.112676
Noboru Watanabe, Masahiko Takahashi
{"title":"Theoretical study of valence excitations in CFCl3 and CF2Cl2 on the basis of generalized oscillator strengths","authors":"Noboru Watanabe, Masahiko Takahashi","doi":"10.1016/j.chemphys.2025.112676","DOIUrl":"10.1016/j.chemphys.2025.112676","url":null,"abstract":"<div><div>This paper presents a theoretical investigation into the electron excitations of CFCl<sub>3</sub> and CF<sub>2</sub>Cl<sub>2</sub>, whose photolysis results in the release of chlorine atoms, causing the destruction of stratospheric ozone. The generalized oscillator strengths (GOSs) of valence excitations are calculated at the equation-of-motion coupled-cluster singles and doubles level. The results for electron excitations from Cl 3p nonbonding orbitals (n<sub>3p</sub>) to the lowest-lying C-Cl antibonding orbital (σ<sup>⁎</sup>) show overall reasonable agreement with the available experimental data. Furthermore, the calculations demonstrate that excitations to the second lowest C-Cl antibonding orbital considerably contribute to the energy region of 8.5–9.5 eV. It is also shown that the C-Cl asymmetric stretching vibration exerts a notable influence on several valence excitations. Additionally, the effect of successive chlorination on the GOS profiles for a series of chlorofluoromethanes is examined to acquire a comprehensive understanding of n<sub>3p</sub> → σ<sup>⁎</sup> transitions observed in a range of chlorofluorocarbons and hydrochlorofluorocarbons.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112676"},"PeriodicalIF":2.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical PhysicsPub Date : 2025-02-25DOI: 10.1016/j.chemphys.2025.112666
Fay Alyahya, Nuha Wazzan
{"title":"Systematic molecular engineering of π-spacer in Indoline-based dyes with D-A'-π-A framework to enhance the intramolecular charge transfer and photovoltaic properties in DSSC and NLO applications: DFT insight","authors":"Fay Alyahya, Nuha Wazzan","doi":"10.1016/j.chemphys.2025.112666","DOIUrl":"10.1016/j.chemphys.2025.112666","url":null,"abstract":"<div><div>This study designed 15 D-A´-π-A indoline-based dyes using four strategies: modifying the π-spacer form, introducing heteroatoms, extending π-conjugation, and altering π-spacer order relative to the WS-2 dye. Utilizing DFT and TD-DFT, we explored the geometrical, electronic, and optical properties of the dyes and their interactions with TiO<sub>2</sub>. Results showed a reduced energy gap, decreasing from 1.911 eV to a range of 1.295 eV–1.622 eV, and a redshifted absorption from 547.30 nm to 602.24 nm–739.31 nm. The introduction of a thiophene (Th) unit improved absorption, intramolecular charge transfer (ICT), and charge mobility. The D-A'-Th-π-A configuration enhanced energy gaps and non-linear optical (NLO) properties, while D-A´-π-Th-A had limitations. Notably, IND14 and IND05 exhibited promising energy gaps and NLO properties, suggesting their potential for increasing short-circuit photocurrent density, offering insights for optimizing D-A´-π-A dyes for efficient dye-sensitized solar cells (DSSCs).</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112666"},"PeriodicalIF":2.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of CO, F2, and NO2 on stanene nanoribbons: Optoelectronic properties and sensing applications","authors":"Nguyen Thanh Tung , Tran Cong Phong , Hoang Van Ngoc","doi":"10.1016/j.chemphys.2025.112668","DOIUrl":"10.1016/j.chemphys.2025.112668","url":null,"abstract":"<div><div>The structural and optoelectronic properties of pristine stanene nanoribbons and their modifications upon adsorption of CO, F<sub>2</sub>, and NO<sub>2</sub> gas molecules were systematically investigated using density functional theory. Pristine SnNRs were identified as semiconductors with an intrinsic band gap of approximately 0.308 eV. Notably, the adsorption of F<sub>2</sub> and NO<sub>2</sub> induced a semiconductor-to-metal transition, whereas CO-adsorbed SnNRs retained semiconducting behavior with a band gap of 0.288 eV. Magnetic analysis revealed a transition from a nonmagnetic ground state in pristine SnNRs to a magnetic state upon gas adsorption, with magnetic moments of 2.624 μ<sub>B</sub>, and 1.099 μ<sub>B</sub> for F<sub>2</sub> and NO<sub>2</sub>, respectively. The underlying adsorption mechanisms were elucidated through detailed investigations of multi-orbital hybridization, charge density redistribution, and optical properties, including the dielectric function, absorption coefficient, and joint density of states. These findings underscore the potential of SnNRs for nanoscale optoelectronic applications and as gas sensors for CO, F<sub>2</sub>, and NO<sub>2</sub>.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112668"},"PeriodicalIF":2.0,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}