{"title":"Lecture 15. Examples of diamonds","authors":"P. Scholze, Jared Weinstein","doi":"10.1515/9780691202150-016","DOIUrl":"https://doi.org/10.1515/9780691202150-016","url":null,"abstract":"","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122045054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lecture 5. Complements on adic spaces","authors":"P. Scholze, Jared Weinstein","doi":"10.1515/9780691202150-006","DOIUrl":"https://doi.org/10.1515/9780691202150-006","url":null,"abstract":"","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129960633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lecture 25. Integral models of local Shimura varieties","authors":"","doi":"10.1515/9780691202150-026","DOIUrl":"https://doi.org/10.1515/9780691202150-026","url":null,"abstract":"","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124145901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lecture 14. Shtukas with one leg III","authors":"","doi":"10.1515/9780691202150-015","DOIUrl":"https://doi.org/10.1515/9780691202150-015","url":null,"abstract":"","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"40 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132984071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adic spaces","authors":"P. Scholze, Jared Weinstein","doi":"10.23943/princeton/9780691202082.003.0002","DOIUrl":"https://doi.org/10.23943/princeton/9780691202082.003.0002","url":null,"abstract":"This chapter reviews the theory of adic spaces as developed by Huber. There are two familiar categories of geometric objects which arise in nonarchimedean geometry: formal schemes and rigid-analytic varieties. The goal is to construct a category of adic spaces which contains both formal schemes and rigid-analytic spaces as full subcategories. Just as formal schemes are built out of affine formal schemes associated to adic rings, and rigid-analytic spaces are built out of affinoid spaces associated to affinoid algebras, adic spaces are built out of affinoid adic spaces, which are associated to pairs of topological rings. The affinoid adic space associated to such a pair is the adic spectrum. The chapter then looks at Huber rings and defines the set of continuous valuations on a Huber ring, which constitute the points of an adic space.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117209306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lecture 18. v-sheaves associated with perfect and formal schemes","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.21","DOIUrl":"https://doi.org/10.2307/j.ctvs32rc9.21","url":null,"abstract":"This chapter explores v-sheaves associated with perfect and formal schemes. The more general formalism of v-sheaves makes it possible to consider not only analytic adic spaces as diamonds, but also certain non-analytic objects as v-sheaves. The chapter first analyzes the behavior on topological spaces. Let X be any pre-adic space over Zp. This is not a diamond, but the chapter shows that it is a v-sheaf. It assesses some properties of this construction. The chapter then looks at applications to local models and integral models of Rapoport-Zink spaces. By passage to the maximal unramified extension and Galois descent, one can assume that k is algebraically closed.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124652359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}