P. Scholze, Jared Weinstein
{"title":"Adic spaces","authors":"P. Scholze, Jared Weinstein","doi":"10.23943/princeton/9780691202082.003.0002","DOIUrl":null,"url":null,"abstract":"This chapter reviews the theory of adic spaces as developed by Huber. There are two familiar categories of geometric objects which arise in nonarchimedean geometry: formal schemes and rigid-analytic varieties. The goal is to construct a category of adic spaces which contains both formal schemes and rigid-analytic spaces as full subcategories. Just as formal schemes are built out of affine formal schemes associated to adic rings, and rigid-analytic spaces are built out of affinoid spaces associated to affinoid algebras, adic spaces are built out of affinoid adic spaces, which are associated to pairs of topological rings. The affinoid adic space associated to such a pair is the adic spectrum. The chapter then looks at Huber rings and defines the set of continuous valuations on a Huber ring, which constitute the points of an adic space.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691202082.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这一章回顾了由休伯提出的矢空间理论。在非阿基米德几何中出现了两类熟悉的几何对象:形式格式和刚性解析变体。目的是构造一个包含形式格式和刚性解析空间作为完整子范畴的进射空间的范畴。正如形式格式是由与进射环相关的仿射形式格式构建而成,刚性解析空间是由与仿射代数相关的仿射空间构建而成,进射空间是由与拓扑环对相关的仿射进空间构建而成。与这样的一对相关联的仿射进空间是进谱。然后,本章讨论Huber环,并定义Huber环上的连续赋值集,这些赋值集构成进进空间的点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adic spaces
This chapter reviews the theory of adic spaces as developed by Huber. There are two familiar categories of geometric objects which arise in nonarchimedean geometry: formal schemes and rigid-analytic varieties. The goal is to construct a category of adic spaces which contains both formal schemes and rigid-analytic spaces as full subcategories. Just as formal schemes are built out of affine formal schemes associated to adic rings, and rigid-analytic spaces are built out of affinoid spaces associated to affinoid algebras, adic spaces are built out of affinoid adic spaces, which are associated to pairs of topological rings. The affinoid adic space associated to such a pair is the adic spectrum. The chapter then looks at Huber rings and defines the set of continuous valuations on a Huber ring, which constitute the points of an adic space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信