Zeguang Han, Xiaofei Chen, Ruiqin Hao, Facai Liu, Jiaqi Li
{"title":"Study on the vibration characteristics of deep groove ball bearings under time-varying loads","authors":"Zeguang Han, Xiaofei Chen, Ruiqin Hao, Facai Liu, Jiaqi Li","doi":"10.21595/vp.2023.23700","DOIUrl":"https://doi.org/10.21595/vp.2023.23700","url":null,"abstract":"A general methodology for dynamic modeling and analysis of deep groove ball bearing used in the crank-slider mechanism of punching machine is presented in this paper. The time-varying loads applied at the inner ring of this bearing can be obtained by analyzing the planar multibody systems. The bearing joint has been modeled by introducing a nonlinear constraint force system, which takes into account the contact stiffness interaction between the rolling elements and the raceways. The four-degree-of-freedom dynamic equations for the inner and outer rings of the bearings is established by Newton's second law. By numerical calculation, the variations of the load, trajectory, FFT frequency domain response, and x direction phase trajectory and Poincare of the inner ring, and the contact force on each ball element are discussed. The results indicate that the present methodology can not only be used to analyze the overall dynamic behavior of crank-slider mechanism and the deep groove ball bearing used in punching machine, but also to obtain the dynamic loads of the inner ring and ball in bearing. Therefore, the dynamic loads on ball elements can provide a basis for the strength checking, fatigue life calculation and wear analysis of the deep groove ball bearing.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"100 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Korendiy, Oleh Parashchyn, Volodymyr Heletiy, Viacheslav Pasika, V. Gurey, N. Maherus
{"title":"Kinematic analysis and geometrical parameters justification of a planetary-type mechanism for actuating an inertial vibration exciter","authors":"V. Korendiy, Oleh Parashchyn, Volodymyr Heletiy, Viacheslav Pasika, V. Gurey, N. Maherus","doi":"10.21595/vp.2023.23728","DOIUrl":"https://doi.org/10.21595/vp.2023.23728","url":null,"abstract":"Vibration exciters are of most important units of any vibratory equipment defining its design peculiarities, operational features, functional purpose, and performance characteristics. Among a great variety of vibration exciters, the unbalanced rotors are of the most widely used. The present research considers the possibilities of providing specific motion trajectories of the vibratory machines’ working members with the help of the planetary-type vibration exciter. The methodology of this study is divided into two main stages: deriving motion equations of an unbalanced mass located on a planet gear and analyzing the possibilities of generating rectilinear, elliptical, and circular motion paths by choosing the appropriate geometrical parameters of the planetary gear train. The results of the performed kinematic analysis are presented in the form of the unbalanced mass trajectories, velocities, and accelerations at different design parameters of the planetary-type mechanism. The main scientific novelty of the present study is substantiating the possibilities of using the single-degree-of-freedom planetary-type mechanism for generating the controllable motion trajectories of the unbalanced mass of an inertial vibration exciter. The obtained results can be practically implemented while developing novel adjustable drives for various vibratory equipment, particularly compactors, sieves, screens, and conveyors.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"10 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of vane pump structure based on modal characteristic analysis","authors":"Jinping Chi","doi":"10.21595/vp.2023.23692","DOIUrl":"https://doi.org/10.21595/vp.2023.23692","url":null,"abstract":"In order to ensure the good stability and reliability of the vane pump, the modal characteristics of the mechanical structure were studied and analyzed through finite element simulation and impact modal testing. Based on the stiffness criterion, an optimization plan was proposed for the structure of the vane pump without reducing the natural frequency. Adopting tetrahedral adaptive mesh method, the mesh quality of the modal simulation model was verified to ensure the accuracy and efficiency of the calculation. In modal testing, force sensors and acceleration sensors were arranged reasonably. The excitation signal would be transmitted to the integrated vibration testing system for processing, and modal analysis and processing would be carried out through LMS Test Lab. Based on curve fitting, the spectrum and modal parameters of the tested structure could be obtained. The influence of different curvature radius of cover plates on natural frequencies were studied, and the results show that increasing the curvature radius within a certain range can enhance stiffness and improve processability.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"14 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-deformation performance of asphalt modified by carbon black extracted from waste cooking oil pyrolysis waste tires rubber","authors":"Yiling Li, Yankai Qin","doi":"10.21595/vp.2023.23647","DOIUrl":"https://doi.org/10.21595/vp.2023.23647","url":null,"abstract":"As a promising renewable resource, waste tire rubber powder has been utilized to enhance asphalt performance but it has compatibility concerns with matrix asphalt. To solve the phase separation between crumb tire rubber (CTR) and asphalt, waste cooking oil (WCO) has been successfully employed as the solvent to desulfurize crumb rubber. However, about 30 % of carbon black is wrapped in crumb rubber, which has a high recycling value. The cross-linking network structure of the crumb rubber can be loosened by waste cooking oil, and the carbon black will gradually peel off. This study desulfurizes crumb rubber with waste cooking oil at 180 ℃, and the carbon black produced by the evolution of rubber structure was separated by Soxhlet extraction. The rubber-cracked carbon black (RCCB) and the industrial carbon black N330 were added to asphalt, and the impact of the two different carbon black on the anti-deformation of asphalt was analyzed by dynamic shear rheometer (DSR). The results indicated that at the same dosage of 5 %, the carbon black separated from rubber will weaken the deformation resistance of asphalt at high temperatures, rather than improving it like N330 produced in the industry.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"5 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and application of gearbox vibration testing system","authors":"Shengrong Geng, Jian Chen, Changwei Lv","doi":"10.21595/vp.2023.23690","DOIUrl":"https://doi.org/10.21595/vp.2023.23690","url":null,"abstract":"Judging the working status of a gearbox through the characteristics of vibration signals was an effective fault diagnosis method. In order to improve the efficiency and reliability of vibration detection, a multi node testing system based on a microcontroller was designed and validated. The system mainly consists of signal processing equipment, signal collector, upper computer, sensors, and experimental workbench. Under different types of gear faults, the vibration signals of ten sets of gearboxes were synchronously collected and processed. In order to ensure the resolution of frequency conversion and accurately locate frequency conversion, the low-pass filtered spectrum with a filtering frequency of 1000 was verified and used to calculate the amplitude of frequency conversion. The normalization of amplitude was more conducive to feature recognition, and the frequency amplitude was proportional to its corresponding energy. According to standard spectral data and spectral analysis, wear, pitting, fracture, and bonding faults in the gearbox were identified and classified. Through the verification of three order feature spectrum, it can be seen that the accuracy of fault prediction for gearbox through vibration signals is high, which can effectively reduce maintenance and repair costs.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139236898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of computer simulation technology in modal analysis of engine mount","authors":"Yuping Yun","doi":"10.21595/vp.2023.23675","DOIUrl":"https://doi.org/10.21595/vp.2023.23675","url":null,"abstract":"In order to obtain the vibration response characteristics of the engine mount, its constrained modal analysis was completed based on the finite element method. The mesh of the contact part between the bolt head and the bracket part was considered as shared node, achieving the simulation of compressive contact between the bolt and bracket parts. The simulation results of natural frequencies and modal shape were verified through constrained modal experiments. The results indicated that the accuracy of the simulation results is high, and the maximum deviation between the natural frequency and the experimental value is less than 5 %. Compared to higher-order modes, the preload had a more significant impact on lower order modes. Based on the modal analysis results, reasonable excitation vibration directions were set, and the dynamic stiffness of the model was simulated and tested within the frequency range of 2400 Hz, providing important basis for optimizing vibration isolation performance.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139236650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the effect of maneuvering overload on the reaction force of the main shaft bearing in aero-engine","authors":"Zhenhe Jiang, Moli Chen, Guihuo Luo, Weiying Wang","doi":"10.21595/vp.2023.23682","DOIUrl":"https://doi.org/10.21595/vp.2023.23682","url":null,"abstract":"In order to study the effects of maneuvering overload on the main shaft bearing (abbreviation: bearing) reaction force in an aero-engine, a bending-torsion coupling dynamic model of the dual rotor system under maneuvering overload was established. Combined with the output parameters of the system model, the bearing reaction force analysis model was established. The maneuvering overload parameters are input into system model. Newmark-β and Newton-raphson methods are used to obtain the bearing reaction force response, and the change laws of bearing reaction force under the different maneuvering overloads are analyzed. The results show that gravity will make the transient response of bearing reaction force offset, and maneuvering overload will make the offset shift. Maneuvering overload will cause bearing to produce a circumferential asymmetric reaction force. For bearing 1, the additional gyroscopic torque in maneuvering overload has a significant effect on the dynamic eccentricity, resulting in a larger offset of reaction force of y direction. For bearings 3 and 4, reaction force of x direction has a larger offset. Under the influence of bent-torsional coupling, the combined frequencies of base frequencies of rotational speed appear in the reaction force spectrum diagram.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139236890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Permanent displacement estimation method based on variational mode decomposition","authors":"Xiaoquan Xu, Yinfeng Dong, Dezhi Fang, Dong Li","doi":"10.21595/vp.2023.23663","DOIUrl":"https://doi.org/10.21595/vp.2023.23663","url":null,"abstract":"In the near-field area of strong earthquakes, the information recorded by a strong seismometer includes ground motion information and complex low-frequency noise. This noise results in the presence of an “extra” acceleration component in the record that is independent of ground motion, and these components are integrated into the velocity and displacement time history to cause offset. In order to solve this problem, this paper adopts a baseline correction method based on variational mode decomposition (VMD), which decomposes seismic signals into modal functions of different frequencies and then extracts the low-frequency modal functions. It is worth noting that these low-frequency modal function components contain linear trend terms, a property that allows us to perform baseline corrections efficiently. The results show that the permanent displacement obtained by this method is in good agreement with the coseismic displacement observed by GPS stations nearby. This method provides an efficient approach for estimation permanent displacement which helps revealing the focal mechanism of an earthquake.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of excitation frequencies on phase contrast in tapping mode atomic force microscope","authors":"Yu Zeng, Guolin Liu, Jinhao Liu, Zheng Wei","doi":"10.21595/vp.2023.23721","DOIUrl":"https://doi.org/10.21595/vp.2023.23721","url":null,"abstract":"There are several imaging modes in AFM, and the tapping mode is the most commonly used scanning mode. Tapping mode can acquire the height information and phase information of the sample surface, among which the phase information has more value, which can reflect the physical properties of the sample surface. In order to understand the phase imaging mechanism of AFM, this paper uses the vibration theory to derive the theoretical expression of phase, and finds that the excitation frequency will directly affect the phase contrast. Based on this, this paper finds, through theoretical and experimental analysis, that there exists an optimal excitation frequency that maximizes the phase contrast during the scanning process. These results are important for interpreting the phase image of AFM and thus optimizing the phase imaging in experiments.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"1 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the performance of gravel stabilization by red mud-based cementitious materials","authors":"Huiqin Zhang, Ping Ji, Si Wu","doi":"10.21595/vp.2023.23632","DOIUrl":"https://doi.org/10.21595/vp.2023.23632","url":null,"abstract":"In this paper, red mud and slag were used as the main cementitious materials, and desulfurization gypsum and exciter materials were mixed to prepare red mud-based cementitious materials with excellent performance. The mechanical properties of red mud-based cementitious material stabilized gravel material were investigated by carrying out the compaction test, unconfined compressive strength test, splitting strength test and fatigue performance test. The test results show that with the increase in the dose of cementitious material, the hydration is more significant, generating more hydrated calcium silicate (C-S-H) gel, which in turn makes the unconfined compressive strength and splitting strength increase to a certain extent. Adding exciter and desulfurization gypsum in the appropriate amount is conducive to improving the hydration of red mud, improving the structural compactness, and improving the mechanical properties, volumetric stability and seepage resistance of the cementitious material.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"64 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}