OMIA@MICCAIPub Date : 2023-07-25DOI: 10.1007/978-3-031-44013-7_14
T. Emre, Marzieh Oghbaie, A. Chakravarty, Antoine Rivail, Sophie Riedl, Julia Mai, H. Scholl, S. Sivaprasad, D. Rueckert, A. Lotery, U. Schmidt-Erfurth, Hrvoje Bogunovi'c
{"title":"Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT","authors":"T. Emre, Marzieh Oghbaie, A. Chakravarty, Antoine Rivail, Sophie Riedl, Julia Mai, H. Scholl, S. Sivaprasad, D. Rueckert, A. Lotery, U. Schmidt-Erfurth, Hrvoje Bogunovi'c","doi":"10.1007/978-3-031-44013-7_14","DOIUrl":"https://doi.org/10.1007/978-3-031-44013-7_14","url":null,"abstract":"","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"32 1","pages":"132-141"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139355122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2023-07-25DOI: 10.48550/arXiv.2307.13646
Justin Engelmann, A. Storkey, M. Bernabeu
{"title":"QuickQual: Lightweight, convenient retinal image quality scoring with off-the-shelf pretrained models","authors":"Justin Engelmann, A. Storkey, M. Bernabeu","doi":"10.48550/arXiv.2307.13646","DOIUrl":"https://doi.org/10.48550/arXiv.2307.13646","url":null,"abstract":"Image quality remains a key problem for both traditional and deep learning (DL)-based approaches to retinal image analysis, but identifying poor quality images can be time consuming and subjective. Thus, automated methods for retinal image quality scoring (RIQS) are needed. The current state-of-the-art is MCFNet, composed of three Densenet121 backbones each operating in a different colour space. MCFNet, and the EyeQ dataset released by the same authors, was a huge step forward for RIQS. We present QuickQual, a simple approach to RIQS, consisting of a single off-the-shelf ImageNet-pretrained Densenet121 backbone plus a Support Vector Machine (SVM). QuickQual performs very well, setting a new state-of-the-art for EyeQ (Accuracy: 88.50% vs 88.00% for MCFNet; AUC: 0.9687 vs 0.9588). This suggests that RIQS can be solved with generic perceptual features learned on natural images, as opposed to requiring DL models trained on large amounts of fundus images. Additionally, we propose a Fixed Prior linearisation scheme, that converts EyeQ from a 3-way classification to a continuous logistic regression task. For this task, we present a second model, QuickQual MEga Minified Estimator (QuickQual-MEME), that consists of only 10 parameters on top of an off-the-shelf Densenet121 and can distinguish between gradable and ungradable images with an accuracy of 89.18% (AUC: 0.9537). Code and model are available on GitHub: https://github.com/justinengelmann/QuickQual . QuickQual is so lightweight, that the entire inference code (and even the parameters for QuickQual-MEME) is already contained in this paper.","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126926207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2022-09-02DOI: 10.1007/978-3-031-16525-2_7
Ikram Brahim, M. Lamard, A. Benyoussef, Pierre-Henri Conze, B. Cochener, D. Cornec, G. Quellec
{"title":"Mapping the Ocular Surface from Monocular Videos with an Application to Dry Eye Disease Grading","authors":"Ikram Brahim, M. Lamard, A. Benyoussef, Pierre-Henri Conze, B. Cochener, D. Cornec, G. Quellec","doi":"10.1007/978-3-031-16525-2_7","DOIUrl":"https://doi.org/10.1007/978-3-031-16525-2_7","url":null,"abstract":"","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134452563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2022-06-24DOI: 10.48550/arXiv.2206.12136
Sharif Amit Kamran, Khondker Fariha Hossain, A. Tavakkoli, S. Zuckerbrod, Salah A. Baker
{"title":"Feature Representation Learning for Robust Retinal Disease Detection from Optical Coherence Tomography Images","authors":"Sharif Amit Kamran, Khondker Fariha Hossain, A. Tavakkoli, S. Zuckerbrod, Salah A. Baker","doi":"10.48550/arXiv.2206.12136","DOIUrl":"https://doi.org/10.48550/arXiv.2206.12136","url":null,"abstract":". Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems’ deploy-ment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract mean-ingful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124908303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2022-05-25DOI: 10.1007/978-3-031-16525-2_16
Ahmed Al Mahrooqi, Dmitrii Medvedev, Rand Muhtaseb, Mohammad Yaqub
{"title":"GARDNet: Robust Multi-view Network for Glaucoma Classification in Color Fundus Images","authors":"Ahmed Al Mahrooqi, Dmitrii Medvedev, Rand Muhtaseb, Mohammad Yaqub","doi":"10.1007/978-3-031-16525-2_16","DOIUrl":"https://doi.org/10.1007/978-3-031-16525-2_16","url":null,"abstract":"","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125802738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2020-08-18DOI: 10.1007/978-3-030-63419-3_8
Guillaume Gisbert, Neel Dey, H. Ishikawa, J. Schuman, J. Fishbaugh, G. Gerig
{"title":"Self-supervised Denoising via Diffeomorphic Template Estimation: Application to Optical Coherence Tomography","authors":"Guillaume Gisbert, Neel Dey, H. Ishikawa, J. Schuman, J. Fishbaugh, G. Gerig","doi":"10.1007/978-3-030-63419-3_8","DOIUrl":"https://doi.org/10.1007/978-3-030-63419-3_8","url":null,"abstract":"","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127019359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2020-07-31DOI: 10.1007/978-3-030-87000-3_20
Xu Sun, Xingxing Cao, Yehui Yang, Lei Wang, Yanwu Xu
{"title":"Robust Retinal Vessel Segmentation from a Data Augmentation Perspective","authors":"Xu Sun, Xingxing Cao, Yehui Yang, Lei Wang, Yanwu Xu","doi":"10.1007/978-3-030-87000-3_20","DOIUrl":"https://doi.org/10.1007/978-3-030-87000-3_20","url":null,"abstract":"","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127995150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OMIA@MICCAIPub Date : 2020-07-29DOI: 10.1007/978-3-030-63419-3_21
Santiago Toledo-Cortés, Melissa De La Pava, Oscar Perd'omo, F. A. Gonz'alez
{"title":"Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification","authors":"Santiago Toledo-Cortés, Melissa De La Pava, Oscar Perd'omo, F. A. Gonz'alez","doi":"10.1007/978-3-030-63419-3_21","DOIUrl":"https://doi.org/10.1007/978-3-030-63419-3_21","url":null,"abstract":"","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127977681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}