基于特征表示学习的光学相干断层成像视网膜疾病鲁棒检测

Sharif Amit Kamran, Khondker Fariha Hossain, A. Tavakkoli, S. Zuckerbrod, Salah A. Baker
{"title":"基于特征表示学习的光学相干断层成像视网膜疾病鲁棒检测","authors":"Sharif Amit Kamran, Khondker Fariha Hossain, A. Tavakkoli, S. Zuckerbrod, Salah A. Baker","doi":"10.48550/arXiv.2206.12136","DOIUrl":null,"url":null,"abstract":". Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems’ deploy-ment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract mean-ingful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.","PeriodicalId":261989,"journal":{"name":"OMIA@MICCAI","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Representation Learning for Robust Retinal Disease Detection from Optical Coherence Tomography Images\",\"authors\":\"Sharif Amit Kamran, Khondker Fariha Hossain, A. Tavakkoli, S. Zuckerbrod, Salah A. Baker\",\"doi\":\"10.48550/arXiv.2206.12136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems’ deploy-ment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract mean-ingful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.\",\"PeriodicalId\":261989,\"journal\":{\"name\":\"OMIA@MICCAI\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OMIA@MICCAI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.12136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OMIA@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.12136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 眼科图像可能包含看起来相同的病理,这可能导致自动化技术无法区分不同的视网膜退行性疾病。此外,对大型带注释的数据集的依赖和缺乏知识蒸馏会限制基于ml的临床支持系统在现实环境中的部署。为了提高知识的鲁棒性和可转移性,需要一个增强的特征学习模块从视网膜子空间中提取有意义的空间表示。这样一个模块,如果有效使用,可以检测独特的疾病特征和区分视网膜退行性病变的严重程度。在这项工作中,我们提出了一个具有三个学习头的鲁棒疾病检测架构,i)用于视网膜疾病分类的监督编码器,ii)用于疾病特定空间信息重建的无监督解码器,以及iii)用于学习编码器-解码器特征之间相似性并提高模型准确性的新型表示学习模块。我们在两个公开可用的OCT数据集上的实验结果表明,所提出的模型在准确性、可解释性和鲁棒性方面优于现有的最先进的模型,用于非分布视网膜疾病检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Representation Learning for Robust Retinal Disease Detection from Optical Coherence Tomography Images
. Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems’ deploy-ment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract mean-ingful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信