Eun-Ji Seo, Hyo-Ran Lee, Se-Yeun Hwang, Deok-Kun Oh, Yong-Uk Kwon, Katharina Köchl, Bettina Nestl, Jin-Byung Park, Uwe T. Bornscheuer
{"title":"Substrate-Binding Cavity Engineering of the Lipoxygenase from Pseudomonas aeruginosa to Produce 8S- and 11S-Hydroxyeicosatetraenoic Acids","authors":"Eun-Ji Seo, Hyo-Ran Lee, Se-Yeun Hwang, Deok-Kun Oh, Yong-Uk Kwon, Katharina Köchl, Bettina Nestl, Jin-Byung Park, Uwe T. Bornscheuer","doi":"10.1021/acssuschemeng.4c05400","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c05400","url":null,"abstract":"Lipoxygenases catalyze the dioxygenation of polyunsaturated fatty acids. Notably, most microbial lipoxygenases including the lipoxygenase from <i>Pseudomonas aeruginosa</i> (<i>Pa</i>-LOX) catalyze oxygenation of linoleic acid and arachidonic acid into 13<i>S</i>-hydroperoxyoctadecenoic acid (13<i>S</i>-HPODE) and 15<i>S</i>-hydroperoxyeicosatetraenoic acid (15<i>S</i>-HPETE), respectively. Therefore, this study has focused on modification of positional specificity or regioselectivity of <i>Pa</i>-LOX. The linoleic acid oxygenations and substrate-docking simulations suggested that the regioselectivity of <i>Pa</i>-LOX might depend on the geometry of the hydrocarbon tail-binding cavity. Therefore, the interior end of the substrate-binding cavity was enlarged to make C10 instead of C13 face the iron active site. Remarkably, the M434G mutation led to alteration of the oxygenation products from 15<i>S</i>-hydroxyeicosatetraenoic acid (15<i>S</i>-HPETE) to 11<i>S</i>-HPETE as the major product from arachidonic acid. On the other hand, the Y609G substitution allowed the formation of 8<i>S</i>-HPETE from arachidonic acid. 8<i>S</i>-HPETE was recovered after reduction by tris(2-carboxyethyl)phosphine hydrochloride with an isolated yield of 62% with a purity of 94% via <i>Escherichia coli</i>-based whole-cell biocatalysis, solvent extraction, and silica gel chromatography. This is the first report of the production of 11<i>S</i>-HPETE and 8<i>S</i>-HPETE from arachidonic acid at high conversions. Therefore, this study contributes to the preparation of biologically active oxylipins from renewable fatty acids in a sustainable way.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"31 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transparent, Fluorophore-Doped Cellulose Nanocrystal Films Prepared from Crop Residue: Superior Radiative Cooler and Organic Photodetector","authors":"Utsav Mishra, Md. Arman Ansari, Akash Chaurasiya, Abhishek Kumar Singh, Debashis Panda","doi":"10.1021/acssuschemeng.4c08984","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c08984","url":null,"abstract":"Carbon-neutral nanomaterials derived from lignocellulosic biomass remain the most preferred choice for lowering down the fossil-fuel-based energy consumption for indoor cooling and metal mining purposes. In this work, the synthetic methodologies for yielding a transparent, conducting cellulose nanocrystal (CNC) film from a highly abundant crop residue, rice straw (<i>Oryza sp</i>. Stems), have been presented. The self-assembly of CNC generates a predominant structural green color. Even the encapsulation of organic fluorophores in CNC films retains a chiral nematic order and a photonic band gap. The highly crystalline nature of the hydroxyl groups present in CNC regulates the excited-state dynamics of Rhodamine B encapsulated in the film. Nevertheless, the transreflective property of the CNC film has been demonstrated owing to its low solar light absorption and high mid-infrared (MIR) emissivity at the atmospheric transmission window (8–13 μm). The CNC film can bring down the temperature of the insulated box by ∼6 <b>°</b>C kept under solar simulator illumination, suggesting an effective radiative cooler. Further, the amine functionalization of CNC has resulted in a remarkable increase in current and mobility, improving the film’s conductivity by several folds. The photoresponsivity of the RhB-encapsulated-amine-functionalized CNC photodetector shows a peak response of ∼6.3 mA/W at ∼665 nm under zero bias. The external quantum efficiency of fabricated devices is about 1%. The CNC derived from the crop residue has multidimensional applications ranging from passive cooling to organic electronics.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"23 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrode-Assisted Pressurized CO2 Fermentation for Acetic Acid and Ethanol Production: Enhanced Carbon Fixation, Metabolic Efficiency, and Sustainability in Carbon-Negative Bioprocesses","authors":"Athmakuri Tharak, S. Venkata Mohan","doi":"10.1021/acssuschemeng.4c07537","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c07537","url":null,"abstract":"Gas fermentation using homoacetogenic consortia to convert CO<sub>2</sub> into sustainable fuels and chemicals has emerged as a promising biotechnological route toward carbon neutrality. However, a significant challenge is the low gas–liquid mass transfer rates due to the limited solubility of C1 gases. This study investigates CO<sub>2</sub> fermentation enhancement using a high-pressure gas fermentation (HPGF) reactor embedded with electrodes, effectively overcoming CO<sub>2</sub> solubility barriers and addressing sustainability through an innovative approach. CO<sub>2</sub> fermentation with H<sub>2</sub> as the electron donor was conducted in pressurized fermenters (PFs) at varying partial pressures (pCO<sub>2</sub>-2, -3, and -5 bar), while pressured electro-fermentation (PEF) used electrodes to replace H<sub>2</sub>. The pCO<sub>2</sub>-PEF-5 condition achieved the highest acetic acid productivity of 2.8 g/L, followed by pCO<sub>2</sub>-PEF-3 at 2.65 g/L, representing 1.2 and 1.18 times higher yields than the best condition of PFs (pCO<sub>2</sub>-PF-3, 2.1 g/L), respectively. Additionally, PEF systems enhanced solventogenic activity, with ethanol production reaching 1.4 g/L in pCO<sub>2</sub>-PEF-5. The substitution of H<sub>2</sub> with electrodes in CO<sub>2</sub> fermentation improved fixation and conversion rates (pCO<sub>2</sub>-PEF-5: 67 mg/L/h, 77%), demonstrating a viable strategy for enhanced CO<sub>2</sub> conversion. The thermodynamic analysis indicated more spontaneous synthesis of acetic acid and ethanol in PEF systems compared with PF systems. Bioelectrochemical assessments revealed higher charge transfer rates, with a faradaic efficiency of 48% in pCO<sub>2</sub>-PEF-5, further supporting CO<sub>2</sub> conversion. Especially, key genes in the Wood–Ljungdahl pathway (WLP) were upregulated in PEF systems, confirming that electro-fermentation influences metabolic pathways favoring carbon fixation and solvent production. A life cycle assessment (LCA) highlighted a net emission reduction of −7 kg CO<sub>2</sub> equiv in PEF-5 and lower impact across endpoint categories, highlighting the carbon-negative potential of this approach. From a planetary boundary framework perspective, this process operates within the Holocene state by reducing CO<sub>2</sub> emissions, helps in maintaining biosphere integrity, reduces atmospheric CO<sub>2</sub>, and contributes minimally to nitrogen and phosphorus flows. This study signifies the sustainability of the PEF strategy for scaling CO<sub>2</sub> conversion processes. The integration of electro-fermentation not only addresses mass transfer limitations but also enhances carbon fixation efficiency and metabolic productivity.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"22 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Wang, Wen-Cui Li, Dan-Hui Sun, Lei He, Bai-Chuan Zhou, An-Hui Lu
{"title":"High-Selective Upgrading of Ethanol to C4–10 Alcohols over Hydroxyapatite Catalyst with Superior Basicity","authors":"Jia Wang, Wen-Cui Li, Dan-Hui Sun, Lei He, Bai-Chuan Zhou, An-Hui Lu","doi":"10.1021/acssuschemeng.4c04185","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c04185","url":null,"abstract":"The catalytic upgrading of renewable ethanol to C<sub>4–10</sub> alcohols via C–C coupling offers a green and negative-carbon-emission pathway toward value-added compounds. The manipulation of catalysts’ surface basic and acidic properties is the key to achieve high-selectivity C<sub>4–10</sub> alcohols. In this study, we present a solvent-free mechanochemical approach for the synthesis of hydroxyapatite (HAP) catalysts with enhanced basicity. The selectivity for a total C<sub>4–10</sub> alcohols reaches 97.8% with a yield of 53.9% at 325 °C and 0.1 MPa, surpassing previously reported catalysts in the literature. The mechanochemically synthesized HAP catalysts extend along the <i>c</i>-axis and expose the (002) crystal plane with enriched strong basic [Ca–O–P] sites. CO<sub>2</sub>-TPD and XPS analyses demonstrated that the hydrogen bonds between the oxygen atoms of adjoining phosphate groups enhance the basic property of the catalyst surfaces. The kinetic measurements have demonstrated that the abundance of strong basic sites facilitates the adsorption of ethanol molecules and accelerates the rate of C–C coupling reactions, which is responsible for a high yield of C<sub>4–10</sub> alcohols. This work offers a sustainable approach for synthesizing such alcohols and stimulates the advancement of environmentally friendly catalysts.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"21 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Luo, Jie Shi, Tiesen Li, Tinghai Wang, Jiangyong Liu, Qingyan Cui, Yisheng Tan, Yuanyuan Yue, Xiaojun Bao
{"title":"Catalytic Dehydration of Glycerol to Acrolein over ZSM-5 Zeolites: Synergistic Effect of Pore Structure and Aluminum Distribution","authors":"Wei Luo, Jie Shi, Tiesen Li, Tinghai Wang, Jiangyong Liu, Qingyan Cui, Yisheng Tan, Yuanyuan Yue, Xiaojun Bao","doi":"10.1021/acssuschemeng.4c07302","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c07302","url":null,"abstract":"The catalytic dehydration of glycerol to acrolein offers a sustainable route for efficiently utilizing low-cost and renewable bioglycerol. This work deeply explores glycerol dehydration to acrolein over ZSM-5 zeolite catalysts with various pore structures and aluminum distributions. The results reveal that glycerol conversion is enhanced through the construction of a mesoporous structure and the increase in Brønsted acid sites of the catalysts, but acrolein selectivity is not directly related to these factors. Further characterizations, density functional theory calculation, kinetic study, and reaction mechanism analysis demonstrate that the richest Al<sub>single</sub> sites in the zeolite framework and the least Al<sub>pair</sub> sites in the straight and sinusoidal channels can prevent the generated acrolein from adsorbing on adjacent Al sites. This allows acrolein to immediately escape from the catalyst surface, reducing side reactions and enhancing its selectivity. Therefore, the synergistic between the mesoporous structure and more Al<sub>single</sub> sites in the ZSM-5 zeolite framework promotes acrolein yield. Additionally, a descriptor φ, reflecting the amount of Al<sub>single</sub> sites and the external specific surface area of the ZSM-5 zeolite, is first proposed to more clearly elucidate the structure–performance relationship. This study provides a new perspective for understanding the mechanism of catalytic dehydration of glycerol to acrolein, guiding the development of highly efficient catalysts. It is significant for the sustainable development of the biodiesel and acrolein production industry.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"99 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Fulignati, Anna Maria Raspolli Galletti, Francesca Barsotti, Virginia Menicagli, Elena Balestri, Claudio Lardicci, Marco Mattonai, Federica Nardella, Claudia Antonetti
{"title":"Sustainable Exploitation of Posidonia oceanica Balls through an Integrated Biorefinery Approach","authors":"Sara Fulignati, Anna Maria Raspolli Galletti, Francesca Barsotti, Virginia Menicagli, Elena Balestri, Claudio Lardicci, Marco Mattonai, Federica Nardella, Claudia Antonetti","doi":"10.1021/acssuschemeng.4c05508","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c05508","url":null,"abstract":"This work proposes the integrated exploitation of fibrous balls of seagrass <i>Posidonia oceanica</i> (PO), which annually accumulate along the sandy Mediterranean beaches, causing significant management and economic problems. Preliminarily, the organic extractives of PO balls were removed by ethanol, and their characterization highlighted the presence of biologically active molecules. The successive alkaline pretreatment allowed the fractionation of the biomass, leading to a solid enriched in polysaccharides and a “black liquor” containing the extracted lignin. The butanolysis of the solid enriched in polysaccharides provided a yield of up to 52.3 mol % of butyl levulinate, a strategic intermediate, and valuable bioblendstock for diesel. Finally, pure acid-insoluble lignin and acid-soluble lignin fractions were recovered from the “black liquor”. These were deeply characterized and proposed as UV-blocker and antioxidant agents.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"30 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomanufacturing of Inositol from Corn Stover with Biological Pretreatment by an In Vitro Synthetic Biology Platform","authors":"Yingjie Pan, Yifan Liu, Tieu Long Phan, Jialun Gao, Yong Wang, Hao Fang","doi":"10.1021/acssuschemeng.4c08006","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c08006","url":null,"abstract":"In this research, corn stover was pretreated by the white-rot fungus <i>Trametes versicolor</i> via solid-state fermentation. Nine primary factors influencing solid-state fermentation were examined through single-factor optimization. The average laccase-specific activity rose from 68.184 to 83.098 U/g, resulting in a 21.87% improvement in fermentation efficiency. Post-solid-state fermentation, steam explosion was employed to remove hemicellulose, aiding subsequent enzymatic degradation. The degradation ratio of lignin and other components reached 45.90% after the biological pretreatment and steam explosion. At the same time, the cellulose content in the resulting solid substrate increased from 38.03 to 64.71%. Subsequently, five heterologous thermostable enzymes were combined with cellulase to process the cellulose in a “one-pot method.” After optimization of reaction conditions, this in vitro synthetic multienzyme catalytic system was capable of producing 4.596 g of inositol per 10 g of pretreated corn stalks. Based on the degradation products of cellulase, the final yield of inositol in the multienzyme cascades reached 89.42% of the theoretical yield. This study demonstrated the feasibility of converting natural raw materials to value-added chemicals using biological methods.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"41 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela Meroni, Carolina Cionti, Giovanni Vavassori, Daniela Maggioni, Giuseppe Cappelletti
{"title":"Multistimuli Responsive ZnO-Stabilized Pickering Emulsions for the Controlled Release of Essential Oils","authors":"Daniela Meroni, Carolina Cionti, Giovanni Vavassori, Daniela Maggioni, Giuseppe Cappelletti","doi":"10.1021/acssuschemeng.4c08020","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c08020","url":null,"abstract":"In situ-functionalized Pickering emulsions can exhibit phase inversion by changing the concentration of surface modifiers. Here, we demonstrate that these systems are far more versatile as multiple stimuli can be harnessed to achieve their phase inversion. Oil-in-water Pickering emulsions were prepared using food-grade vegetable oil and stabilized solely by in situ-functionalized ZnO particles. ZnO was selected for its semiconductor and amphoteric properties, which enable the controlled switching/destabilization activated by multiple stimuli: acidification by mineral and organic acids, UV and sunlight irradiation, addition of multivalent cations and CO<sub>2</sub> bubbling. Depending on the stimulus, the switching kinetics and reversibility can be tailored. Switching by acidification, light irradiation or CO<sub>2</sub> bubbling is fully reversible upon either pH increase, N<sub>2</sub> bubbling or storage in the dark. Even after consecutive cycles, stable oil-in-water Pickering emulsions could be reobtained. Irreversible destabilization can instead be triggered by excess addition of acids and multivalent cations. The switching kinetics can be modulated achieving either an on–off behavior or a controlled destabilization over several hours. The oil phase of the emulsion can be loaded with active substances, such as volatile and unstable essential oils. Emulsions containing cinnamaldehyde (up to 1500 ppm) were prepared and destabilized after accelerated aging: the molecule was stored and released in the aqueous phase without undergoing any degradation, with concentrations in a range suitable to avoid proliferation of bacteria and fungi. Up to four consecutive release cycles were successfully conducted by two different procedures, proving the system’s applicability as a continuous source of the active molecule.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"10 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Wu, Liqian Liu, Xinyue Yan, Tingting Wang, Gang Pan, Jiahao Bai, Yong Li
{"title":"Highly Dispersed Pd Nanoparticles Immobilized on N-Doped Hollow Carbon Spheres for Efficient Catalytic Hydrodeoxygenation of Biomass-Derived Vanillin under Atmospheric Conditions","authors":"Jun Wu, Liqian Liu, Xinyue Yan, Tingting Wang, Gang Pan, Jiahao Bai, Yong Li","doi":"10.1021/acssuschemeng.4c07026","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c07026","url":null,"abstract":"Catalytic hydrodeoxygenation (HDO) of bio-oil is an effective and challenging route to the efficient utilization of biomass with rich oxygen-containing groups. Herein, highly dispersed Pd nanoparticles (NPs) anchored on a N-doped hollow carbon sphere (NHCS) were constructed to effectively catalyze the chemoselective HDO of bio-oil-derived vanillin. The optimized Pd/NHCS-900 catalyst presented a high 99% conversion and 98% selectivity to 2-methoxy-4-methylphenol (MMP) within 45 min under very mild conditions of 50 °C and 1 atm H<sub>2</sub>. The incorporated N species in the NHCS support and its hierarchical porous structure facilitate the dispersion and stabilization of Pd NPs, resulting in the formation of highly dispersed Pd NPs with excellent structure stability. Moreover, the presence of a strong electronic metal–support interaction between N and highly dispersed Pd NPs produced the surface electron-rich active Pd NPs, which could enhance the adsorption and activation of reactants, thereby exhibiting high intrinsic catalytic activity with a large turnover frequency (TOF) of 1700.3 h<sup>–1</sup>. Kinetic study and density functional theory (DFT) calculations demonstrated the HDO reaction pathway and the corresponding reaction mechanism. These findings pave the way for the development of efficient and stable metal catalysts for sustainable biomass conversion.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"20 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuehong Zhang, Qinyang Lei, Shutong Zhang, Langlang Dai, Bin Lyu, Leipeng Liu
{"title":"Biobased Unsaturated Polyester Thermosets from Castor Oil and Isosorbide with Life Cycle Assessment","authors":"Yuehong Zhang, Qinyang Lei, Shutong Zhang, Langlang Dai, Bin Lyu, Leipeng Liu","doi":"10.1021/acssuschemeng.4c07624","DOIUrl":"https://doi.org/10.1021/acssuschemeng.4c07624","url":null,"abstract":"The development of low-carbon and environmentally friendly unsaturated polyester thermosets has attracted widespread attention. In this work, methacrylated castor oil (MCO) and methacrylated isosorbide (MI) were prepared using renewable castor oil and isosorbide by a simple and mild method. Subsequently, a variety of sustainable unsaturated polyester materials (MCO-MI) were prepared by curing MCO resin with the reactive diluent MI in different ratios via free radical polymerization. The chemical structure, viscosity, biobased carbon content, and LD<sub>50</sub> of MCO and MI were evaluated, and the mechanical properties, thermo-mechanical properties, solvent resistance, and life cycle assessment (LCA) of the cured MCO-MI thermosets were investigated. The results showed that MCO and MI exhibited low viscosity (746 and 4 mPa s), chemical toxicity, and high biobased carbon content (85.9 and 76.9%). When the mass ratio of MCO to MI was 40:60, the resulting MCO-MI thermosets had the optimum thermo-mechanical property with a <i>T</i><sub>g</sub> of 170.2 °C and a tensile strength of 35.6 MPa. In addition, the LCA results demonstrated that the MCO-MI thermosets had striking environmental benefits over traditional petroleum-based unsaturated polyester materials containing styrene. This work provides insight into the preparation of environmentally friendly and high-performance unsaturated polyester materials employing biobased building blocks.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"23 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}