Earth and Space From Infrared to Terahertz (ESIT 2022)最新文献

筛选
英文 中文
A practical target radiance estimating method on near-surface long-range 一种实用的近地表远程目标辐射估计方法
Earth and Space From Infrared to Terahertz (ESIT 2022) Pub Date : 2023-01-31 DOI: 10.1117/12.2664528
Feifei Xu, Xiaomao Huang
{"title":"A practical target radiance estimating method on near-surface long-range","authors":"Feifei Xu, Xiaomao Huang","doi":"10.1117/12.2664528","DOIUrl":"https://doi.org/10.1117/12.2664528","url":null,"abstract":"UV detection technology has great advantages for the effective detection of space targets. Due to the immediacy of the space detection target, it is difficult for the detection system to capture the target. When detecting the space target, it is necessary to select appropriate bands and set effective instrument parameters to increase the capture probability of the space target. At the same time, the field experiment process of space target detection by detector is relatively complex and difficult, so it is difficult to obtain such data. In the absence of test data, in order to make the UV detection system can set effective detection band, and ensure the good test and quickly obtain the radiation characteristics of the longrange target, simulation method is used in this paper. In an experimental way, in the case of unknown atmospheric conditions and composition, a model for calculating the near-surface long-range target radiance in UV band is constructed, which simplifies the radiative transmission process of the signal in the atmosphere. In this paper, the radiation of target in UV band is studied, and the mathematical model of radiation calculation is established. The research results have certain engineering application value. In the field test, it is difficult to determine the atmospheric transmittance between the camera and the target due to the lack of estimation of the atmospheric composition at the launch time, which makes it difficult to accurately estimate the radiation of the long-range target at near-surface in the test site. To solve this problem, the ultraviolet (UV) band was divided into two parts, that were target band (240nm~280nm) and background band (300nm~400nm). By simulation, the estimating models of atmospheric transmissivity were separately established in the two bands. And then the long-distance target radiance was estimated only according to the distance for successive two times between the detector and target in a short time. Compared with the radiance of blackbody simulated, the relative error is about 9.87% in the target band, but only 0.11% in the background band. The research can provide technical support for UV detector to effectively detect the long-range target radiance.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121750285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The instrumental responsivity effect to the calibrated radiances of infrared hyperspectral benchmark sounder 仪器响应度对红外高光谱基准测深仪标定辐射度的影响
Earth and Space From Infrared to Terahertz (ESIT 2022) Pub Date : 2023-01-31 DOI: 10.1117/12.2665786
Lu Lee, Chengli Qi, L. Ding
{"title":"The instrumental responsivity effect to the calibrated radiances of infrared hyperspectral benchmark sounder","authors":"Lu Lee, Chengli Qi, L. Ding","doi":"10.1117/12.2665786","DOIUrl":"https://doi.org/10.1117/12.2665786","url":null,"abstract":"The space-borne infrared (IR) hyperspectral sounder is one important part of benchmark instruments for detection of the tiny change of long-term global climate. The IR sounder should provide irrefutable benchmarking records by measuring the infrared radiance with an ultra-high accuracy of 0.1 K (k=3, or 99% confidence), and tracing it to the Système Internationale (SI) standard for the Kelvin through the Planck function theory. Besides, the IR sounder would also constitute a reference standard, or calibration observatory, in space to inter-calibrate the international fleet of IR sounders onboard weather satellites, especially those are not as well calibrated. The measurement needs to be well-calibrated with the instrument features being eliminated, and it is critical to investigate the possible error sources associated with the sounder design and its radiometric calibration. One calibration error that arises in Fourier Transform Spectrometers (FTS) has been found associated with the spectrally variable instrument responsivity. According to the theoretical analysis of the current radiometric calibration, this error is an intrinsic feature of the FTS instruments, but it will lead to the measurements no longer being served as the standard radiances because of a radiance error introduced in the calibrated spectrum. In this paper, the radiometric errors result from the instrument responsivity effect are revealed by numerical simulations based on the spectral responses for ideal and close-to-real instruments.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115037608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on immersion grating used in weak carbon dioxide band detection spectrometer 浸入式光栅用于弱二氧化碳波段探测光谱仪的研究
Earth and Space From Infrared to Terahertz (ESIT 2022) Pub Date : 2023-01-31 DOI: 10.1117/12.2665406
B. Huang, Quan Liu, Nenghua Zhou, Zongqing Wu
{"title":"Study on immersion grating used in weak carbon dioxide band detection spectrometer","authors":"B. Huang, Quan Liu, Nenghua Zhou, Zongqing Wu","doi":"10.1117/12.2665406","DOIUrl":"https://doi.org/10.1117/12.2665406","url":null,"abstract":"The imaging spectrometer monitoring the CO2 content in the atmosphere is mainly divided into the weak CO2 band and the strong CO2 band. Compared with the strong CO2 band, the weak CO2 band has a relatively clean spectrum, less interference from water vapor and other gases, and weaker CO2 absorption, and the instrument can receive stronger groundreflected solar radiation signals. However, the concentration of CO2 in the atmosphere is low. To use this band to detect changes in CO2 concentration, it is necessary to ensure that the detection instrument has a sufficiently high spectral resolution. Using the immersion grating as the dispersive element in the spectrometer can greatly reduce the size and weight of the instrument while achieving high spectral resolution. In this paper, the quartz immersion grating used in the weak CO2 detector is optimized and designed, the groove parameters of the grating are designed and optimized according to the requirements of the weak CO2 detector used, and the rectangle and different bottom angles are designed and optimized in consideration of the actual production error. In the 1.595-1.625 μm band, the duty cycle of the rectangular groove is 0.3-0.35, the groove depth is 560-630 nm, and the TiO2 thickness is 110-120 nm, the diffraction efficiency of the grating is higher than 80%; the duty ratio is 0.4-0.45, When the groove depth is 590-660 nm and the TiO2 thickness is 100-105 nm, the diffraction efficiency of the grating is higher than 80%. When the duty ratio of the trapezoidal groove is 0.3-0.35, the bottom angle of the trapezoid is 82°-86°, the groove depth is 590-630 nm, and the TiO2 thickness is 120-125 nm, the diffraction efficiency of the grating is higher than 80%. When the duty ratio of the trapezoidal groove is 0.4-0.45, the bottom angle of the trapezoid is 82°-86°, the groove depth is 620-670 nm, and the thickness of TiO2 is 105 nm, the diffraction efficiency of the grating is higher than 80%.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121830013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信