{"title":"A data-driven approach to power system dynamic state estimation","authors":"D. Kumari, S. Bhattacharyya","doi":"10.1109/ISAP.2017.8071371","DOIUrl":"https://doi.org/10.1109/ISAP.2017.8071371","url":null,"abstract":"This paper evaluates a dynamic state estimation algorithm for power transmission systems, which operates without knowledge of the underlying system model. It relies purely on measurement data from phasor measurement units (PMUs) along with input data to the system (such as loads, field voltages). The algorithm uses Gaussian processes (GPs) to approximate the measurement and process functions. The hyperparameters of the GP are learned from past measurements and corresponding state estimates. The learned GP, in conjunction with the unscented Kalman filter (UKF), facilitates sequential state estimation. The algorithm, when evaluated on IEEE 14-bus test case, gives an accuracy rate of over 94%.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127832493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Event analysis of pulse-reclosers in distribution systems through sparse representation","authors":"M. E. Raoufat, A. Taalimi, K. Tomsovic, R. Hay","doi":"10.1109/ISAP.2017.8071406","DOIUrl":"https://doi.org/10.1109/ISAP.2017.8071406","url":null,"abstract":"The pulse-recloser uses pulse testing technology to verify that the line is clear of faults before initiating a reclose operation, which significantly reduces stress on the system components (e.g. substation transformers) and voltage sags on adjacent feeders. Online event analysis of pulse-reclosers are essential to increases the overall utility of the devices, especially when there are numerous devices installed throughout the distribution system. In this paper, field data recorded from several devices were analyzed to identify specific activity and fault locations. An algorithm is developed to screen the data to identify the status of each pole and to tag time windows with a possible pulse event. In the next step, selected time windows are further analyzed and classified using a sparse representation technique by solving an ℓ1-regularized least-square problem. This classification is obtained by comparing the pulse signature with the reference dictionary to find a set that most closely matches the pulse features. This work also sheds additional light on the possibility of fault classification based on the pulse signature. Field data collected from a distribution system are used to verify the effectiveness and reliability of the proposed method.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117252390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Glauner, Angelo Migliosi, J. Meira, Eric A. Antonelo, Petko Valtchev, R. State, Franck Bettinger
{"title":"Is big data sufficient for a reliable detection of non-technical losses?","authors":"P. Glauner, Angelo Migliosi, J. Meira, Eric A. Antonelo, Petko Valtchev, R. State, Franck Bettinger","doi":"10.1109/ISAP.2017.8071420","DOIUrl":"https://doi.org/10.1109/ISAP.2017.8071420","url":null,"abstract":"Non-technical losses (NTL) occur during the distribution of electricity in power grids and include, but are not limited to, electricity theft and faulty meters. In emerging countries, they may range up to 40% of the total electricity distributed. In order to detect NTLs, machine learning methods are used that learn irregular consumption patterns from customer data and inspection results. The Big Data paradigm followed in modern machine learning reflects the desire of deriving better conclusions from simply analyzing more data, without the necessity of looking at theory and models. However, the sample of inspected customers may be biased, i.e. it does not represent the population of all customers. As a consequence, machine learning models trained on these inspection results are biased as well and therefore lead to unreliable predictions of whether customers cause NTL or not. In machine learning, this issue is called covariate shift and has not been addressed in the literature on NTL detection yet. In this work, we present a novel framework for quantifying and visualizing covariate shift. We apply it to a commercial data set from Brazil that consists of 3.6M customers and 820K inspection results. We show that some features have a stronger covariate shift than others, making predictions less reliable. In particular, previous inspections were focused on certain neighborhoods or customer classes and that they were not sufficiently spread among the population of customers. This framework is about to be deployed in a commercial product for NTL detection.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130713352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}