A data-driven approach to power system dynamic state estimation

D. Kumari, S. Bhattacharyya
{"title":"A data-driven approach to power system dynamic state estimation","authors":"D. Kumari, S. Bhattacharyya","doi":"10.1109/ISAP.2017.8071371","DOIUrl":null,"url":null,"abstract":"This paper evaluates a dynamic state estimation algorithm for power transmission systems, which operates without knowledge of the underlying system model. It relies purely on measurement data from phasor measurement units (PMUs) along with input data to the system (such as loads, field voltages). The algorithm uses Gaussian processes (GPs) to approximate the measurement and process functions. The hyperparameters of the GP are learned from past measurements and corresponding state estimates. The learned GP, in conjunction with the unscented Kalman filter (UKF), facilitates sequential state estimation. The algorithm, when evaluated on IEEE 14-bus test case, gives an accuracy rate of over 94%.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper evaluates a dynamic state estimation algorithm for power transmission systems, which operates without knowledge of the underlying system model. It relies purely on measurement data from phasor measurement units (PMUs) along with input data to the system (such as loads, field voltages). The algorithm uses Gaussian processes (GPs) to approximate the measurement and process functions. The hyperparameters of the GP are learned from past measurements and corresponding state estimates. The learned GP, in conjunction with the unscented Kalman filter (UKF), facilitates sequential state estimation. The algorithm, when evaluated on IEEE 14-bus test case, gives an accuracy rate of over 94%.
电力系统动态状态估计的数据驱动方法
本文研究了一种不知道底层系统模型的输电系统动态状态估计算法。它完全依赖于相量测量单元(pmu)的测量数据以及系统的输入数据(如负载,现场电压)。该算法使用高斯过程(GPs)逼近测量函数和过程函数。GP的超参数是从过去的测量和相应的状态估计中学习到的。学习到的GP与无气味卡尔曼滤波器(UKF)相结合,便于序列状态估计。在IEEE 14总线测试用例上对该算法进行了测试,准确率达到94%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信