T. Nguyen, M. Weidlich, Hongzhi Yin, Bolong Zheng, Q. Nguyen, Quoc Viet Hung Nguyen
{"title":"FactCatch: Incremental Pay-as-You-Go Fact Checking with Minimal User Effort","authors":"T. Nguyen, M. Weidlich, Hongzhi Yin, Bolong Zheng, Q. Nguyen, Quoc Viet Hung Nguyen","doi":"10.1145/3397271.3401408","DOIUrl":"https://doi.org/10.1145/3397271.3401408","url":null,"abstract":"The open nature of the Web enables users to produce and propagate any content without authentication, which has been exploited to spread thousands of unverified claims via millions of online documents. Maintenance of credible knowledge bases thus has to rely on fact checking that constructs a trusted set of facts through credibility assessment. Due to an inherent lack of ground truth information and language ambiguity, fact checking cannot be done in a purely automated manner without compromising accuracy. However, state-of-the-art fact checking services, rely mostly on human validation, which is costly, slow, and non-transparent. This paper presents FactCatch, a human-in-the-loop system to guide users in fact checking that aims at minimisation of the invested effort. It supports incremental quality estimation, mistake mitigation, and pay-as-you-go instantiation of a high-quality fact database.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130492577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Zhang, Jiaxin Mao, Yiqun Liu, Xiaohui Xie, Weizhi Ma, Min Zhang, Shaoping Ma
{"title":"Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics","authors":"Fan Zhang, Jiaxin Mao, Yiqun Liu, Xiaohui Xie, Weizhi Ma, Min Zhang, Shaoping Ma","doi":"10.1145/3397271.3401162","DOIUrl":"https://doi.org/10.1145/3397271.3401162","url":null,"abstract":"Evaluation metrics play an important role in the batch evaluation of IR systems. Based on a user model that describes how users interact with the rank list, an evaluation metric is defined to link the relevance scores of a list of documents to an estimation of system effectiveness and user satisfaction. Therefore, the validity of an evaluation metric has two facets: whether the underlying user model can accurately predict user behavior and whether the evaluation metric correlates well with user satisfaction. While a tremendous amount of work has been undertaken to design, evaluate, and compare different evaluation metrics, few studies have explored the consistency between these two facets of evaluation metrics. Specifically, we want to investigate whether the metrics that are well calibrated with user behavior data can perform as well in estimating user satisfaction. To shed light on this research question, we compare the performance of various metrics with the C/W/L Framework in estimating user satisfaction when they are optimized to fit observed user behavior. Experimental results on both self-collected and public available user search behavior datasets show that the metrics optimized to fit users' click behavior can perform as well as those calibrated with user satisfaction feedback. We also investigate the reliability in the calibration process of evaluation metrics to find out how much data is required for parameter tuning. Our findings provide empirical support for the consistency between user behavior modeling and satisfaction measurement, as well as guidance for tuning the parameters in evaluation metrics.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114210364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chong Chen, Min Zhang, Weizhi Ma, Yiqun Liu, Shaoping Ma
{"title":"Jointly Non-Sampling Learning for Knowledge Graph Enhanced Recommendation","authors":"Chong Chen, Min Zhang, Weizhi Ma, Yiqun Liu, Shaoping Ma","doi":"10.1145/3397271.3401040","DOIUrl":"https://doi.org/10.1145/3397271.3401040","url":null,"abstract":"Knowledge graph (KG) contains well-structured external information and has shown to be effective for high-quality recommendation. However, existing KG enhanced recommendation methods have largely focused on exploring advanced neural network architectures to better investigate the structural information of KG. While for model learning, these methods mainly rely on Negative Sampling (NS) to optimize the models for both KG embedding task and recommendation task. Since NS is not robust (e.g., sampling a small fraction of negative instances may lose lots of useful information), it is reasonable to argue that these methods are insufficient to capture collaborative information among users, items, and entities. In this paper, we propose a novel Jointly Non-Sampling learning model for Knowledge graph enhanced Recommendation (JNSKR). Specifically, we first design a new efficient NS optimization algorithm for knowledge graph embedding learning. The subgraphs are then encoded by the proposed attentive neural network to better characterize user preference over items. Through novel designs of memorization strategies and joint learning framework, JNSKR not only models the fine-grained connections among users, items, and entities, but also efficiently learns model parameters from the whole training data (including all non-observed data) with a rather low time complexity. Experimental results on two public benchmarks show that JNSKR significantly outperforms the state-of-the-art methods like RippleNet and KGAT. Remarkably, JNSKR also shows significant advantages in training efficiency (about 20 times faster than KGAT), which makes it more applicable to real-world large-scale systems.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116319618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep Critiquing for VAE-based Recommender Systems","authors":"Kai Luo, Hojin Yang, Ga Wu, S. Sanner","doi":"10.1145/3397271.3401091","DOIUrl":"https://doi.org/10.1145/3397271.3401091","url":null,"abstract":"Providing explanations for recommended items not only allows users to understand the reason for receiving recommendations but also provides users with an opportunity to refine recommendations by critiquing undesired parts of the explanation. While much research focuses on improving the explanation of recommendations, less effort has focused on interactive recommendation by allowing a user to critique explanations. Aside from traditional constraint- and utility-based critiquing systems, the only end-to-end deep learning based critiquing approach in the literature so far, CE-VNCF, suffers from unstable and inefficient training performance. In this paper, we propose a Variational Autoencoder (VAE) based critiquing system to mitigate these issues and improve overall performance. The proposed model generates keyphrase-based explanations of recommendations and allows users to critique the generated explanations to refine their personalized recommendations. Our experiments show promising results: (1) The proposed model is competitive in terms of general performance in comparison to state-of-the-art recommenders, despite having an augmented loss function to support explanation and critiquing. (2) The proposed model can generate high-quality explanations compared to user or item keyphrase popularity baselines. (3) The proposed model is more effective in refining recommendations based on critiquing than CE-VNCF, where the rank of critiquing-affected items drops while general recommendation performance remains stable. In summary, this paper presents a significantly improved method for multi-step deep critiquing based recommender systems based on the VAE framework.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124034571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongyu Ru, Zhenghui Wang, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu
{"title":"QuAChIE: Question Answering based Chinese Information Extraction System","authors":"Dongyu Ru, Zhenghui Wang, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu","doi":"10.1145/3397271.3401411","DOIUrl":"https://doi.org/10.1145/3397271.3401411","url":null,"abstract":"In this paper, we present the design of QuAChIE, a Question Answering based Chinese Information Extraction system. QuAChIE mainly depends on a well-trained question answering model to extract high-quality triples. The group of head entity and relation are regarded as a question given the input text as the context. For the training and evaluation of each model in the system, we build a large-scale information extraction dataset using Wikidata and Wikipedia pages by distant supervision. The advanced models implemented on top of the pre-trained language model and the enormous distant supervision data enable QuAChIE to extract relation triples from documents with cross-sentence correlations. The experimental results on the test set and the case study based on the interactive demonstration show its satisfactory Information Extraction quality on Chinese document-level texts.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127757699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active Learning Stopping Strategies for Technology-Assisted Sensitivity Review","authors":"G. Mcdonald, C. Macdonald, I. Ounis","doi":"10.1145/3397271.3401267","DOIUrl":"https://doi.org/10.1145/3397271.3401267","url":null,"abstract":"Active learning strategies are often deployed in technology-assisted review tasks, such as e-discovery and sensitivity review, to learn a classifier that can assist the reviewers with their task. In particular, an active learning strategy selects the documents that are expected to be the most useful for learning an effective classifier, so that these documents can be reviewed before the less useful ones. However, when reviewing for sensitivity, the order in which the documents are reviewed can impact on the reviewers' ability to perform the review. Therefore, when deploying active learning in technology-assisted sensitivity review, we want to know when a sufficiently effective classifier has been learned, such that the active learning can stop and the reviewing order of the documents can be selected by the reviewer instead of the classifier. In this work, we propose two active learning stopping strategies for technology-assisted sensitivity review. We evaluate the effectiveness of our proposed approaches in comparison with three state-of-the-art stopping strategies from the literature. We show that our best performing approach results in a significantly more effective sensitivity classifier (+6.6% F2) than the best performing stopping strategy from the literature (McNemar's test, p<0.05).","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125700445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunseok Noh, Yongmin Shin, Junmo Park, A.-Yeong Kim, S. Choi, Hyun-Je Song, Seong-Bae Park, Seyoung Park
{"title":"WIRE: An Automated Report Generation System using Topical and Temporal Summarization","authors":"Yunseok Noh, Yongmin Shin, Junmo Park, A.-Yeong Kim, S. Choi, Hyun-Je Song, Seong-Bae Park, Seyoung Park","doi":"10.1145/3397271.3401409","DOIUrl":"https://doi.org/10.1145/3397271.3401409","url":null,"abstract":"The demand for a tool for summarizing emerging topics is increasing in modern life since the tool can deliver well-organized information to its users. Even though there are already a number of successful search systems, the system which automatically summarizes and organizes the content of emerging topics is still in its infancy. To fulfill such demand, we introduce an automated report generation system that generates a well-summarized human-readable report for emerging topics. In this report generation system, emerging topics are automatically discovered by a topic model and news articles are indexed by the discovered topics. Then, a topical summary and a timeline summary for each topic is generated by a topical multi-document summarizer and a timeline summarizer respectively. In order to enhance the apprehensibility of the users, the proposed report system provides two report modes. One is Today's Briefing which summarizes five discovered topics of every day, and the other is Full Report which shows a long-term view of each topic with a detailed topical summary and an important event timeline.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115982852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohui Xie, Jiaxin Mao, Y. Liu, M. de Rijke, Haitian Chen, Min Zhang, Shaoping Ma
{"title":"Preference-based Evaluation Metrics for Web Image Search","authors":"Xiaohui Xie, Jiaxin Mao, Y. Liu, M. de Rijke, Haitian Chen, Min Zhang, Shaoping Ma","doi":"10.1145/3397271.3401146","DOIUrl":"https://doi.org/10.1145/3397271.3401146","url":null,"abstract":"Following the success of Cranfield-like evaluation approaches to evaluation in web search, web image search has also been evaluated with absolute judgments of (graded) relevance. However, recent research has found that collecting absolute relevance judgments may be difficult in image search scenarios due to the multi-dimensional nature of relevance for image results. Moreover, existing evaluation metrics based on absolute relevance judgments do not correlate well with search users' satisfaction perceptions in web image search. Unlike absolute relevance judgments, preference judgments do not require that relevance grades be pre-defined, i.e., how many levels to use and what those levels mean. Instead of considering each document in isolation, preference judgments consider a pair of documents and require judges to state their relative preference. Such preference judgments are usually more reliable than absolute judgments since the presence of (at least) two items establishes a certain context. While preference judgments have been studied extensively for general web search, there exists no thorough investigation on how preference judgments and preference-based evaluation metrics can be used to evaluate web image search systems. Compared to general web search, web image search may be an even better fit for preference-based evaluation because of its grid-based presentation style. The limited need for fresh results in web image search also makes preference judgments more reusable than for general web search. In this paper, we provide a thorough comparison of variants of preference judgments for web image search. We find that compared to strict preference judgments, weak preference judgments require less time and have better inter-assessor agreement. We also study how absolute relevance levels of two given images affect preference judgments between them. Furthermore, we propose a preference-based evaluation metric named Preference-Winning-Penalty (PWP) to evaluate and compare between two different image search systems. The proposed PWP metric outperforms existing evaluation metrics based on absolute relevance judgments in terms of agreement to system-level preferences of actual users.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130229597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TADS: Learning Time-Aware Scheduling Policy with Dyna-Style Planning for Spaced Repetition","authors":"Zhengyu Yang, Jian Shen, Yunfei Liu, Yang Yang, Weinan Zhang, Yong Yu","doi":"10.1145/3397271.3401316","DOIUrl":"https://doi.org/10.1145/3397271.3401316","url":null,"abstract":"Spaced repetition technique aims at improving long-term memory retention for human students by exploiting repeated, spaced reviews of learning contents. The study of spaced repetition focuses on designing an optimal policy to schedule the learning contents. To the best of our knowledge, none of the existing methods based on reinforcement learning take into account the varying time intervals between two adjacent learning events of the student, which, however, are essential to determine real-world schedule. In this paper, we aim to learn a scheduling policy that fully exploits the varying time interval information with high sample efficiency. We propose the Time-Aware scheduler with Dyna-Style planning (TADS) approach: a sample-efficient reinforcement learning framework for realistic spaced repetition. TADS learns a Time-LSTM policy to select an optimal content according to the student's whole learning history and the time interval since the last learning event. Besides, Dyna-style planning is integrated into TADS to further improve the sample efficiency. We evaluate our approach on three environments built from synthetic data and real-world data based on well-recognized cognitive models. Empirical results demonstrate that TADS achieves superior performance against state-of-the-art algorithms.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130686237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Web of Scholars: A Scholar Knowledge Graph","authors":"Jiaying Liu, Jing Ren, Wenqing Zheng, Lianhua Chi, Ivan Lee, Feng Xia","doi":"10.1145/3397271.3401405","DOIUrl":"https://doi.org/10.1145/3397271.3401405","url":null,"abstract":"In this work, we demonstrate a novel system, namely Web of Scholars, which integrates state-of-the-art mining techniques to search, mine, and visualize complex networks behind scholars in the field of Computer Science. Relying on the knowledge graph, it provides services for fast, accurate, and intelligent semantic querying as well as powerful recommendations. In addition, in order to realize information sharing, it provides open API to be served as the underlying architecture for advanced functions. Web of Scholars takes advantage of knowledge graph, which means that it will be able to access more knowledge if more search exist. It can be served as a useful and interoperable tool for scholars to conduct in-depth analysis within Science of Science.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131162070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}