T. Nguyen, M. Weidlich, Hongzhi Yin, Bolong Zheng, Q. Nguyen, Quoc Viet Hung Nguyen
{"title":"FactCatch: Incremental Pay-as-You-Go Fact Checking with Minimal User Effort","authors":"T. Nguyen, M. Weidlich, Hongzhi Yin, Bolong Zheng, Q. Nguyen, Quoc Viet Hung Nguyen","doi":"10.1145/3397271.3401408","DOIUrl":null,"url":null,"abstract":"The open nature of the Web enables users to produce and propagate any content without authentication, which has been exploited to spread thousands of unverified claims via millions of online documents. Maintenance of credible knowledge bases thus has to rely on fact checking that constructs a trusted set of facts through credibility assessment. Due to an inherent lack of ground truth information and language ambiguity, fact checking cannot be done in a purely automated manner without compromising accuracy. However, state-of-the-art fact checking services, rely mostly on human validation, which is costly, slow, and non-transparent. This paper presents FactCatch, a human-in-the-loop system to guide users in fact checking that aims at minimisation of the invested effort. It supports incremental quality estimation, mistake mitigation, and pay-as-you-go instantiation of a high-quality fact database.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The open nature of the Web enables users to produce and propagate any content without authentication, which has been exploited to spread thousands of unverified claims via millions of online documents. Maintenance of credible knowledge bases thus has to rely on fact checking that constructs a trusted set of facts through credibility assessment. Due to an inherent lack of ground truth information and language ambiguity, fact checking cannot be done in a purely automated manner without compromising accuracy. However, state-of-the-art fact checking services, rely mostly on human validation, which is costly, slow, and non-transparent. This paper presents FactCatch, a human-in-the-loop system to guide users in fact checking that aims at minimisation of the invested effort. It supports incremental quality estimation, mistake mitigation, and pay-as-you-go instantiation of a high-quality fact database.