Acta Materialia最新文献

筛选
英文 中文
Magnetic field controlled surface localization of ferromagnetic resonance modes in 3D nanostructures 三维纳米结构中铁磁共振模式的磁场控制表面定位
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-29 DOI: 10.1016/j.actamat.2024.120499
Mateusz Gołębiewski , Krzysztof Szulc , Maciej Krawczyk
{"title":"Magnetic field controlled surface localization of ferromagnetic resonance modes in 3D nanostructures","authors":"Mateusz Gołębiewski ,&nbsp;Krzysztof Szulc ,&nbsp;Maciej Krawczyk","doi":"10.1016/j.actamat.2024.120499","DOIUrl":"10.1016/j.actamat.2024.120499","url":null,"abstract":"<div><div>By extending the current understanding and use of magnonics beyond conventional planar systems, we demonstrate the surface localization of ferromagnetic resonance (FMR) modes through the design of complex three-dimensional nanostructures. Using micromagnetic simulations, we systematically investigate woodpile-like scaffolds and gyroids — periodic chiral entities characterized by their triple junctions. The study highlights the critical role of demagnetizing fields and exchange energy in determining the FMR responses of 3D nanosystems, especially the strongly asymmetric distribution of the spin-wave mode over the system’s height. Importantly, the top–bottom dynamic switching of the surface mode localization across the structures in response to changes in magnetic field orientation provides a new method for controlling magnetization dynamics. The results demonstrate the critical role of the geometric features in dictating the dynamic magnetic behavior of three-dimensional nanostructures, paving the way for both experimental exploration and practical advances in 3D magnonics.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120499"},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On identifying dynamic length scales in crystal plasticity 关于确定晶体塑性的动态长度尺度
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-29 DOI: 10.1016/j.actamat.2024.120506
Dénes Berta , David Kurunczi-Papp , Lasse Laurson , Péter Dusán Ispánovity
{"title":"On identifying dynamic length scales in crystal plasticity","authors":"Dénes Berta ,&nbsp;David Kurunczi-Papp ,&nbsp;Lasse Laurson ,&nbsp;Péter Dusán Ispánovity","doi":"10.1016/j.actamat.2024.120506","DOIUrl":"10.1016/j.actamat.2024.120506","url":null,"abstract":"<div><div>Materials are often heterogeneous at various length scales, with variations in grain structure, defects, and composition which has a strong influence on the emergent macroscopic plastic behavior. In particular, heterogeneities lead to fluctuations in the plastic response in the form of jerky flow and ubiquitous strain bursts. One of the crucial aspects of plasticity modeling is scale bridging: In order to deliver physically correct crystal plasticity models, one needs to determine relevant microstructural length scales. In this paper we advance the idea that continuum descriptions of dislocation mediated plasticity cannot neglect dynamic correlations related to the avalanche behavior. We present an extensive weakest link analysis of crystal plasticity by means of three-dimensional discrete dislocation dynamics simulations with and without spherical precipitates. We investigate strain bursts and related length scales and conclude that while sufficiently strong obstacles to dislocation motion tend to confine the dislocation avalanches within well-defined sub-volumes, in pure dislocation systems the avalanches may span the system, implying that the dynamic length scale is, in fact, the size of the entire sample. Consequences of this finding on continuum modeling are thoroughly discussed.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120506"},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Step flow mechanism in dissolutive wetting Cu/Ni systems 溶解润湿铜/镍体系中的阶跃流动机制
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120519
Youqing Sun , Zhongfu Cheng , K. Vijay Reddy , Diqiu He , Ensieh Yousefi , Miral Verma , Nele Moelans , Muxing Guo , David Seveno
{"title":"Step flow mechanism in dissolutive wetting Cu/Ni systems","authors":"Youqing Sun ,&nbsp;Zhongfu Cheng ,&nbsp;K. Vijay Reddy ,&nbsp;Diqiu He ,&nbsp;Ensieh Yousefi ,&nbsp;Miral Verma ,&nbsp;Nele Moelans ,&nbsp;Muxing Guo ,&nbsp;David Seveno","doi":"10.1016/j.actamat.2024.120519","DOIUrl":"10.1016/j.actamat.2024.120519","url":null,"abstract":"<div><div>The Cu-Ni system is a typical dissolutive system due to its mutual dissolution across a wide range of temperatures and compositions. We characterized the effects of Ni dissolution on the wetting behavior of liquid Cu by combining high-temperature wetting experiments, in-situ observation of spreading and solidification, microstructure analysis of the quenched droplets, and computational fluid dynamic (CFD) simulations. In the very early moment, at 1100 °C, when the Cu droplet is brought in contact with the Ni substrate, it oscillates due to capillarity and is dampened by inertial effects, while the significant Ni dissolution at 1150 °C largely reduced the initial oscillations. Later, a peculiar spreading behavior is observed and we propose to describe it through a 4-step mechanism: pinning of the contact line by a newly formed solid solution layer at the interface acting as a physical barrier, driving of liquid towards the solidified edge due to a Ni-concentration induced Marangoni flow, forming of a precursor film ahead of the solidified edge caused by the strong Cu-Ni interactions and Marangoni flow, and finally depinning due to overflow as a result of liquid accumulation at the solidified edge. The formation of a solid solution layer is confirmed by in-situ observation and quenching. The Ni-concentration induced Marangoni flow is characterized experimentally and further investigated by CFD simulations. The proposed step flow mechanism can be potentially relevant to other dissolutive wetting systems (e.g. Bi/Sn, Ag/Cu and Cu/Fe systems), which are crucial for high-temperature processing techniques.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120519"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shrinkage and deformation of material extrusion 3D printed parts during sintering: Numerical simulation and experimental validation 材料挤压 3D 打印部件在烧结过程中的收缩和变形:数值模拟和实验验证
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120518
Sri Bharani Ghantasala , Gurminder Singh , Jean-Michel Missiaen , Didier Bouvard
{"title":"Shrinkage and deformation of material extrusion 3D printed parts during sintering: Numerical simulation and experimental validation","authors":"Sri Bharani Ghantasala ,&nbsp;Gurminder Singh ,&nbsp;Jean-Michel Missiaen ,&nbsp;Didier Bouvard","doi":"10.1016/j.actamat.2024.120518","DOIUrl":"10.1016/j.actamat.2024.120518","url":null,"abstract":"<div><div>Material extrusion 3D printing (ME3DP) combined with sintering is a low-cost additive manufacturing technique for fabricating components of difficult-to-print metals, such as copper, aluminum, and ceramics. However, the sintering process includes complex material science, such as volumetric shrinkage and free structural bending, to identify the relative density and deformation of a 3D printed sample. The prediction of the relative density and deformations during the sintering process provides information to the design engineer to optimize the design of the CAD model before sintering. In this study, a phenomenological model based on constitutive equations was developed to predict the density and structural deformation during the sintering process of pure copper components fabricated by ME3DP using metal injection molding feedstock. The densification rate was determined using shrinkage estimation with an isothermal stairway heating cycle in a vertical dilatometer. Furthermore, different sets of experiments were performed with a load on the probe with long isothermal heating cycles at 850, 900, 950, 1000, and 1050 °C in a vertical dilatometer to estimate the axial viscosity of the copper. The constitutive equations were solved using the solid mechanics module with user-defined creep in COMSOL Multiphysics by considering isotropic assumptions. Two types of geometries, cube and overhanging I section, were used to predict shrinkage and deformation during the sintering process. The developed model successfully predicted the relative density based on shrinkage and structural deformation owing to gravity during the sintering process.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120518"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic imaging of thermally switchable antiferromagnetic/ferromagnetic modulated thin films 热转换反铁磁/铁磁调制薄膜的磁成像
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120515
W. Griggs , A. Peasey , F. Schedin , Md.S. Anwar , B. Eggert , M.-A. Mawass , F. Kronast , H. Wende , R. Bali , T. Thomson
{"title":"Magnetic imaging of thermally switchable antiferromagnetic/ferromagnetic modulated thin films","authors":"W. Griggs ,&nbsp;A. Peasey ,&nbsp;F. Schedin ,&nbsp;Md.S. Anwar ,&nbsp;B. Eggert ,&nbsp;M.-A. Mawass ,&nbsp;F. Kronast ,&nbsp;H. Wende ,&nbsp;R. Bali ,&nbsp;T. Thomson","doi":"10.1016/j.actamat.2024.120515","DOIUrl":"10.1016/j.actamat.2024.120515","url":null,"abstract":"<div><div>Nanoscale magnetic patterning can lead to the formation of a variety of spin textures, depending on the intrinsic properties of the material and the microstructure. Here we report on the spin textures formed in laterally patterned antiferromagnetic (AF)/ferromagnetic (FM) thin film stripes with a period of 200 nm (100 nm FM/100 nm AF). We make use of the AF to FM phase transition in FeRh thin films at ∼100 °C, thereby creating a nanoscale pattern that is thermally switchable between AF/FM stripes and uniformly FM. A combination of spin-resolved photoemission electron microscopy, magnetic force microscopy, and magnetometry measurements allow direct nanoscale observations of the stray magnetic fields emergent from the nanopattern as well as the underlying magnetisation. Our measurements reveal pinning centres resistant to temperature cycling that govern the modulated spin-texture as well as a sub-texture consisting of grain-driven nanoscale magnetisation structure directed out of the film plane. The nanoscale magnetic structure is thus strongly influenced by the film microstructure. Signatures of exchange bias are not observed, most likely due to the small contact area between the AF and FM regions, combined with the fact that the interfaces between the damaged and undamaged regions are likely to be highly diffuse owing to the lateral scattering of incoming ions. These results show that temperature controllable spin textures can be created in FeRh thin films which could find application in domain wall, microwave, or magnonic devices.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120515"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach to coating for improving the comprehensive high-temperature service performance of TiAl alloys 改善钛铝合金高温综合服役性能的新型涂层方法
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120500
Yanxun Mu , Yongfeng Liang , Jiaqi Sheng , Chenyang Zhang , Zheng Guo , Gang Yang , Tielong Sun , Yongsheng Wang , Junpin Lin
{"title":"A novel approach to coating for improving the comprehensive high-temperature service performance of TiAl alloys","authors":"Yanxun Mu ,&nbsp;Yongfeng Liang ,&nbsp;Jiaqi Sheng ,&nbsp;Chenyang Zhang ,&nbsp;Zheng Guo ,&nbsp;Gang Yang ,&nbsp;Tielong Sun ,&nbsp;Yongsheng Wang ,&nbsp;Junpin Lin","doi":"10.1016/j.actamat.2024.120500","DOIUrl":"10.1016/j.actamat.2024.120500","url":null,"abstract":"<div><div>TiAl alloys, with half the density of nickel-based superalloys, are highly suitable for aerospace applications requiring lightweight materials. However, they tend to form a nonprotective mixed oxide film on their surface at high temperatures. This oxide film is prone to cracking, which can lead to long-term high-temperature oxidation surface degradation, thereby reducing their high-temperature creep and fatigue resistance. Surface cracks on the oxide film further aggravated the brittleness of the TiAl intermetallic compounds after high-temperature exposure. While coatings are typically applied to promote the formation of dense oxides for surface protection, they primarily enhance oxidation resistance. However, this improvement comes at the cost of reducing the high-temperature creep and fatigue resistance and the room-temperature plasticity of TiAl alloys. This study introduced an electroless coating method to deposit a Pt coating, approximately 200 nm thick, on the surface of TiAl alloys. During high-temperature applications, the Pt dispersed as nanoparticles within the oxide layer, enhancing the oxide's plasticity. This oxide structure considerably improved the high-temperature creep and fatigue properties of TiAl alloys, while enhancing their room-temperature tensile properties after oxidation. This approach offers a novel strategy for designing surface coatings for high-temperature components.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120500"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced energy storage performance of 0.85BaTiO3–0.15Bi(Mg0.5Hf0.5)O3 films via synergistic effect of defect dipole and oxygen vacancy engineering 通过缺陷偶极和氧空位工程的协同效应提高 0.85BaTiO3-0.15Bi(Mg0.5Hf0.5)O3 薄膜的储能性能
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120522
Weijie Fu , Yi-qin Lu , Qiuyang Han , Tian-Yi Hu , Tingzhi Duan , Yupeng Liu , Shao-Dong Cheng , Yanzhu Dai , Ming Liu , Chunrui Ma
{"title":"Enhanced energy storage performance of 0.85BaTiO3–0.15Bi(Mg0.5Hf0.5)O3 films via synergistic effect of defect dipole and oxygen vacancy engineering","authors":"Weijie Fu ,&nbsp;Yi-qin Lu ,&nbsp;Qiuyang Han ,&nbsp;Tian-Yi Hu ,&nbsp;Tingzhi Duan ,&nbsp;Yupeng Liu ,&nbsp;Shao-Dong Cheng ,&nbsp;Yanzhu Dai ,&nbsp;Ming Liu ,&nbsp;Chunrui Ma","doi":"10.1016/j.actamat.2024.120522","DOIUrl":"10.1016/j.actamat.2024.120522","url":null,"abstract":"<div><div>Dielectric capacitors are widely used in electronic devices due to their ultra-fast charge/discharge rate and ultra-high power density, but their lower energy density and poor thermal stability limit their further application. In contrast to the traditional strategy of suppressing defects, this work combines oxygen vacancies with defect dipoles to improve the breakdown strength and polarization behavior of ferroelectric films. Low concentration of oxygen vacancies and defect dipoles can trap charge carriers and increase breakdown strength, but if the concentration is too high, it can easily make films prone to breakdown. Moreover, the defect dipoles can reduce <em>P<sub>r</sub></em> by providing intrinsic restoring force for polarization switching, while excessive defect dipoles and oxygen vacancies can pin domain walls and increase <em>P<sub>r</sub></em>. By delicately controlling the concentration of oxygen vacancies and defect dipoles in the film, the BT-BMH film deposited at 0.135 mbar achieved the maximum breakdown strength and slim <em>P</em>-<em>E</em> loops, inducing the energy density to reach 108.9 J·cm<sup>-3</sup> with an efficiency of 79.6 % at room temperature and excellent thermal stability in the wide temperature range of -100∼350 °C with the energy density of 69.1 J·cm<sup>-3</sup>. This work reveals the important significance of reasonable defect control for improving energy storage performance and provides an effective method for developing high-performance dielectric capacitors.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120522"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the partitioning behavior of Mo in nickel-based superalloys and its effect on microstructure using CALPHAD-assisted phase field modeling 利用 CALPHAD 辅助相场建模对镍基超合金中钼的分配行为及其对微观结构影响的新认识
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120510
Zexin Wang , Chuanxin Liang , Xiangdong Ding , Dong Wang
{"title":"New insights into the partitioning behavior of Mo in nickel-based superalloys and its effect on microstructure using CALPHAD-assisted phase field modeling","authors":"Zexin Wang ,&nbsp;Chuanxin Liang ,&nbsp;Xiangdong Ding ,&nbsp;Dong Wang","doi":"10.1016/j.actamat.2024.120510","DOIUrl":"10.1016/j.actamat.2024.120510","url":null,"abstract":"<div><div>Elemental partitioning behaviors are critical in determining the high-temperature capabilities of superalloys. In multi-component superalloys, these behaviors are influenced by the competition among elements. This study examines the effects of Cr concentration on elemental distribution behaviors and γ′ evolution in Ni–10Al–4Mo–<em>x</em>Cr superalloys using CALPHAD-informed phase field modeling. Our simulations show that Mo's preference shifts from γ′ precipitates to γ matrix as Cr concentration increases. This shift results from the competitive interactions between Mo and Cr atoms at the corner sites of Ni<sub>3</sub>Al, reducing Mo's solubility in γ′ precipitates. Further analysis reveals that with increasing Cr concentration, more Mo is displaced by Cr at the B sites of γ′-A<sub>3</sub>B. Additionally, the Mo content in γ′ precipitate decreases with rising Cr content, resulting in an abnormal rise in the γ′ volume fraction based on Mo mass balance. Moreover, γ′ coarsening rate initially rises and then falls with increasing Cr concentration in an inverted “V” shape, a change attributable to variations in the γ matrix supersaturation. These findings provide new insights into Mo distribution in nickel-based superalloys and offer guidance for designing superalloys with improved microstructural stability.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120510"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling quantitative analysis of in situ TEM experiments: A high-throughput, deep learning-based approach tailored to the dynamics of dislocations 实现原位 TEM 实验的定量分析:基于深度学习的高通量方法,专为位错动力学量身定制
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120455
Hengxu Song , Binh Duong Nguyen , Kishan Govind , Dénes Berta , Péter Dusán Ispánovity , Marc Legros , Stefan Sandfeld
{"title":"Enabling quantitative analysis of in situ TEM experiments: A high-throughput, deep learning-based approach tailored to the dynamics of dislocations","authors":"Hengxu Song ,&nbsp;Binh Duong Nguyen ,&nbsp;Kishan Govind ,&nbsp;Dénes Berta ,&nbsp;Péter Dusán Ispánovity ,&nbsp;Marc Legros ,&nbsp;Stefan Sandfeld","doi":"10.1016/j.actamat.2024.120455","DOIUrl":"10.1016/j.actamat.2024.120455","url":null,"abstract":"<div><div><em>In situ</em> TEM is by far the most commonly used microscopy method for imaging dislocations, i.e., line-like defects in crystalline materials. However, quantitative image analysis so far was not possible, implying that also statistical analyses were strongly limited. In this work, we created a deep learning-based digital twin of an <em>in situ</em> TEM straining experiment, additionally allowing to perform matching simulations. As application we extract spatio-temporal information of moving dislocations from experiments carried out on a Cantor high entropy alloy and investigate the universality class of plastic strain avalanches. We can directly observe “stick–slip motion” of single dislocations and compute the corresponding avalanche statistics. The distributions turn out to be scale-free, and the exponent of the power law distribution exhibits independence on the driving stress. The introduced methodology is entirely generic and has the potential to turn meso-scale TEM microscopy into a truly quantitative and reproducible approach.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120455"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Low-E electro-strain via high-electronegativity B-site substitution in lead-free K0.5Na0.5NbO3-based ceramics 通过在无铅 K0.5Na0.5NbO3 基陶瓷中取代高电负性 B 晶位来增强低电应变
IF 8.3 1区 材料科学
Acta Materialia Pub Date : 2024-10-28 DOI: 10.1016/j.actamat.2024.120520
Jie Wang, Binquan Wang, Geng Huangfu, Hongjie Zhang, Yiping Guo
{"title":"Boosting Low-E electro-strain via high-electronegativity B-site substitution in lead-free K0.5Na0.5NbO3-based ceramics","authors":"Jie Wang,&nbsp;Binquan Wang,&nbsp;Geng Huangfu,&nbsp;Hongjie Zhang,&nbsp;Yiping Guo","doi":"10.1016/j.actamat.2024.120520","DOIUrl":"10.1016/j.actamat.2024.120520","url":null,"abstract":"<div><div>Lead-free piezoelectric actuators emerge as promising substitutes for their lead-containing counterparts to address environmental concerns. However, they often confront a trade-off between low driving electric fields and high electro-strain. Herein, a novel strategy to boost electro-strain under low electric fields is proposed by doping high-electronegativity B-site atoms into perovskite potassium sodium niobate-based ceramics. Our findings reveal that high-electronegativity B-site atoms elevate the covalency of B-O bonding, softening the short-range repulsion and introducing local multiphase coexistence. This leads to more nanoscale domain structures and lower coercive field, thereby enabling large strains to be produced at lower electric fields. Notably, a substantial 0.2 % bipolar electro-strain and 0.1 % unipolar electro-strain under 10 kV cm<sup>-1</sup> is achieved in Sr, Sb co-doped potassium sodium niobate ceramics, with a broad working frequency and temperature range, as well as excellent fatigue resistance. This study unveils innovative insights into designing lead-free piezoelectric ceramics with remarkable electro-strain performance and low driving electric field, promising a significant advancement in lead-free piezoelectric materials science and piezoelectric actuators.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120520"},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信