Wiley Interdisciplinary Reviews: RNA最新文献

筛选
英文 中文
Correction to "A little less aggregation a little more replication: Viral manipulation of stress granules". 更正“少一点聚集多一点复制:压力颗粒的病毒操纵”。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-11-01 Epub Date: 2023-10-03 DOI: 10.1002/wrna.1821
{"title":"Correction to \"A little less aggregation a little more replication: Viral manipulation of stress granules\".","authors":"","doi":"10.1002/wrna.1821","DOIUrl":"10.1002/wrna.1821","url":null,"abstract":"","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1821"},"PeriodicalIF":7.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41135359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The tip of the iceberg-The roles of long noncoding RNAs in acute myeloid leukemia. 冰山一角——长链非编码rna在急性髓性白血病中的作用。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-11-01 Epub Date: 2023-06-02 DOI: 10.1002/wrna.1796
Patrick Connerty, Richard B Lock
{"title":"The tip of the iceberg-The roles of long noncoding RNAs in acute myeloid leukemia.","authors":"Patrick Connerty, Richard B Lock","doi":"10.1002/wrna.1796","DOIUrl":"10.1002/wrna.1796","url":null,"abstract":"<p><p>Long noncoding RNAs (lncRNAs) are traditionally defined as RNA transcripts longer than 200 nucleotides that have no protein coding potential. LncRNAs have been identified to be dysregulated in various types of cancer, including the deadly hematopoietic cancer-acute myeloid leukemia (AML). Currently, survival rates for AML have reached a plateau necessitating new therapeutic targets and biomarkers to improve treatment options and survival from the disease. Therefore, the identification of lncRNAs as novel biomarkers and therapeutic targets for AML has major benefits. In this review, we assess the key studies which have recently identified lncRNAs as important molecules in AML and summarize the current knowledge of lncRNAs in AML. We delve into examples of the specific roles of lncRNA action in AML such as driving proliferation, differentiation block and therapy resistance as well as their function as tumor suppressors and utility as biomarkers. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1796"},"PeriodicalIF":7.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9564791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress of CRISPR-based programmable RNA manipulation and detection. 基于crispr的可编程RNA操作与检测研究进展。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-11-01 Epub Date: 2023-06-06 DOI: 10.1002/wrna.1804
Beibei Wang, Hui Yang
{"title":"Progress of CRISPR-based programmable RNA manipulation and detection.","authors":"Beibei Wang, Hui Yang","doi":"10.1002/wrna.1804","DOIUrl":"10.1002/wrna.1804","url":null,"abstract":"<p><p>Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1804"},"PeriodicalIF":7.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-derived non-coding RNAs endow tumor microenvironment with immunosuppressive properties. 癌症衍生的非编码RNA赋予肿瘤微环境免疫抑制特性。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-10-10 DOI: 10.1002/wrna.1822
Tong Hu, Run Shi, Yunru Gu, Hanyu Zhou, Yuan Fang, Tingting Xu, Yangyue Xu, Xi Wu, Ling Ma, Yongqian Shu
{"title":"Cancer-derived non-coding RNAs endow tumor microenvironment with immunosuppressive properties.","authors":"Tong Hu,&nbsp;Run Shi,&nbsp;Yunru Gu,&nbsp;Hanyu Zhou,&nbsp;Yuan Fang,&nbsp;Tingting Xu,&nbsp;Yangyue Xu,&nbsp;Xi Wu,&nbsp;Ling Ma,&nbsp;Yongqian Shu","doi":"10.1002/wrna.1822","DOIUrl":"https://doi.org/10.1002/wrna.1822","url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) have attracted extensive attention due to their vital roles in tumorigenesis and progression, especially in the immunotherapy resistance. Tumor immunotherapy resistance is a crucial factor hindering the efficacy of tumor treatments, which can be largely attributed to the immunosuppressive properties of tumor microenvironment. Current studies have revealed that cancer-derived ncRNAs are involved in the formation of tumor immunosuppressive microenvironment (TIME) through multiple ways. They not only promote the expression of immune checkpoint ligands (e.g., PD-L1, CD47, Gal-9, and CD276) on cancer cell surfaces, but also enhance the secretion of immunosuppressive cytokines (e.g., TGF-β, IL-6, IL-10, VEGF, and chemokines). Cancer-derived ncRNAs could also be transferred into surrounding immune-related cells through extracellular vesicles, thereby inhibiting the cytotoxicity of CD8<sup>+</sup> T cells and NK cells, restraining the DC-mediated antigen presentation, inducing the immunosuppressive phenotype transformation of TAMs and CAFs, and enhancing the immunosuppressive functions of Tregs and MDSCs. Herein, we summarize the roles of cancer-derived ncRNAs in regulating TIME formation and further explore their potential applications as prognostic biomarkers and immunotherapeutic targets, which will help us to address the TIME-mediated immunotherapy resistance in the future. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1822"},"PeriodicalIF":7.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of microRNA by circular RNA. 环状核糖核酸对微小核糖核酸的调节。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-10-02 DOI: 10.1002/wrna.1820
Suman Singh, Tanvi Sinha, Amaresh C Panda
{"title":"Regulation of microRNA by circular RNA.","authors":"Suman Singh,&nbsp;Tanvi Sinha,&nbsp;Amaresh C Panda","doi":"10.1002/wrna.1820","DOIUrl":"https://doi.org/10.1002/wrna.1820","url":null,"abstract":"<p><p>Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1820"},"PeriodicalIF":7.3,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41103990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imprinted small nucleolar RNAs: Missing link in development and disease? 印记小核仁rna:发育和疾病的缺失环节?
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-18 DOI: 10.1002/wrna.1818
Kishor Gawade, Katarzyna D Raczynska
{"title":"Imprinted small nucleolar RNAs: Missing link in development and disease?","authors":"Kishor Gawade,&nbsp;Katarzyna D Raczynska","doi":"10.1002/wrna.1818","DOIUrl":"https://doi.org/10.1002/wrna.1818","url":null,"abstract":"<p><p>The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1818"},"PeriodicalIF":7.3,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclin-dependent kinases: Masters of the eukaryotic universe. 依赖细胞周期蛋白的激酶:真核生物宇宙的主宰者
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-17 DOI: 10.1002/wrna.1816
Aleksandra J Pluta, Cécilia Studniarek, Shona Murphy, Chris J Norbury
{"title":"Cyclin-dependent kinases: Masters of the eukaryotic universe.","authors":"Aleksandra J Pluta, Cécilia Studniarek, Shona Murphy, Chris J Norbury","doi":"10.1002/wrna.1816","DOIUrl":"10.1002/wrna.1816","url":null,"abstract":"<p><p>A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several \"cell-cycle\" CDKs having important roles in transcription and some \"transcriptional\" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1816"},"PeriodicalIF":7.3,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. ADAR 的 A 到 I RNA 编辑及其治疗应用:从病毒感染到癌症免疫疗法。
IF 6.4 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-17 DOI: 10.1002/wrna.1817
Rohini Datta, Julia Z Adamska, Amruta Bhate, Jin Billy Li
{"title":"A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy.","authors":"Rohini Datta, Julia Z Adamska, Amruta Bhate, Jin Billy Li","doi":"10.1002/wrna.1817","DOIUrl":"10.1002/wrna.1817","url":null,"abstract":"<p><p>ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1817"},"PeriodicalIF":6.4,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of alternative splicing: Functional interplay with epigenetic modifications and its implication to cancer. 选择性剪接的调控:与表观遗传修饰的功能相互作用及其对癌症的影响。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-12 DOI: 10.1002/wrna.1815
Ning Wang, Yue Hu, Zefeng Wang
{"title":"Regulation of alternative splicing: Functional interplay with epigenetic modifications and its implication to cancer.","authors":"Ning Wang,&nbsp;Yue Hu,&nbsp;Zefeng Wang","doi":"10.1002/wrna.1815","DOIUrl":"https://doi.org/10.1002/wrna.1815","url":null,"abstract":"<p><p>Eukaryotic gene expression is intricately regulated at multiple levels. The protein-coding genes are first transcribed as pre-mRNAs in the nucleus and undergo a series of RNA processing steps before being transported into the cytoplasm for translation. During RNA processing, most human genes (>95%) undergo alternative splicing to generate multiple mRNA isoforms from a single gene, which effectively diversifies the genome complexity. Since the splicing of most genes occurs co-transcriptionally, the regulation layers of gene expression often show functional interactions with each other. In this review, we provide a brief overview of alternative splicing regulation in three different layers (controlled by the splicing machinery, transcription process, and chromatin structure), emphasizing the regulatory roles of epigenetic modifications and the crosstalk between these layers. Specifically, we categorize the major effects of the epigenetic modifications on alternative splicing into three different types: by affecting transcription rate, splicing factor recruitment, or the expression/activity of splicing factor. The dysregulation of epigenetics and splicing are extremely common in cancer, we also discuss the potential mechanisms of how epigenetic changes can lead to splicing dysregulation and their functional consequences. We aim to provide insights into the complicated regulation of different gene expression layers, which will shed light on the novel approaches to modulate disease-related splicing dysregulation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1815"},"PeriodicalIF":7.3,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10564634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. 将酿酒酵母作为研究 RNA 介导的人类疾病的工具。
IF 7.3 2区 生物学
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-06 DOI: 10.1002/wrna.1814
Stephanie Gastelum, Allison F Michael, Timothy A Bolger
{"title":"Saccharomyces cerevisiae as a research tool for RNA-mediated human disease.","authors":"Stephanie Gastelum, Allison F Michael, Timothy A Bolger","doi":"10.1002/wrna.1814","DOIUrl":"10.1002/wrna.1814","url":null,"abstract":"<p><p>The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1814"},"PeriodicalIF":7.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10162601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信