Weed Technology最新文献

筛选
英文 中文
Peach Tree Response to Low-Dosages of Dicamba as Repeated Applications or with Various Spray Nozzles 重复施用低剂量麦草畏或不同喷雾方式对桃树的影响
IF 1.4 3区 农林科学
Weed Technology Pub Date : 2023-11-29 DOI: 10.1017/wet.2023.80
Matthew B. Bertucci, Thomas R. Butts, Koffi Badou-Jeremie Kouame, Jason K. Norsworthy
{"title":"Peach Tree Response to Low-Dosages of Dicamba as Repeated Applications or with Various Spray Nozzles","authors":"Matthew B. Bertucci, Thomas R. Butts, Koffi Badou-Jeremie Kouame, Jason K. Norsworthy","doi":"10.1017/wet.2023.80","DOIUrl":"https://doi.org/10.1017/wet.2023.80","url":null,"abstract":"Two low-dose dicamba exposure trials were conducted on container-grown peach trees in Fayetteville, AR. Peach trees were ‘July Prince’ scions grafted onto ‘Guardian’ rootstock and were transplanted into 19 L containers and received experimental dicamba treatments in each year. Container trials were initiated in 2020 and repeated on new trees in 2021. In the repeated application trial, dicamba was applied at 5.6 g ae ha<jats:sup>-1</jats:sup> (1/100× field rate) in five sequences: an untreated control receiving no herbicide, one treatment receiving only initial application, and three treatments receiving initial application plus sequential applications at the same rate occurring 14 d, 28 d, 14 d + 28 d after initial treatment (DAT). A separate trial assessed peach tree responses to dicamba applied at 11.2 g ae ha<jats:sup>-1</jats:sup> (1/50× field rate) using a selection of nozzles with differing droplet spectrum characteristics: Turbo TeeJet® Induction (TTI11002), Air Induction Turbo TeeJet® (AITTJ60-11002), AIXR TeeJet® (AIXR11002, air induction extended range), XR TeeJet® (XR11002, extended range flat fan), and XR TeeJet® (XR1100067, extended range flat fan). Peach tree height, tree cross sectional area (TCSA) and leaf chlorophyll content were not reduced in response to any sequence of dicamba application or nozzle selection. Repeated applications of dicamba at 1/100× rate did not increase peach injury after 28 DAT. By 84 DAT, no effect of nozzle type on peach tree injury was discernable, and all treatments caused below 4% injury. No dicamba or dicamba metabolites were observed in leaf samples collected at 14, 69, or 85 DAT from trees treated with XR1100067 nor in untreated controls. While peach tree injury was observed throughout the experiment, dicamba residues were only detected consistently in 2020 from leaf samples of trees treated with dicamba at 1/50× rate using TTI1102, AITTJ60-11002, AIXR11002, and XR11002 nozzles.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of Soybean, Cotton, and Tobacco to Volatility of 2,4-D and Dicamba Formulations in Humidome 大豆、棉花和烟草对土壤中2,4- d和麦草畏制剂挥发性的响应
IF 1.4 3区 农林科学
Weed Technology Pub Date : 2023-11-24 DOI: 10.1017/wet.2023.86
Estefania G. Polli, Travis W. Gannon, Mathieu LeCompte, Ronald R. Rogers, Daniel D. Beran
{"title":"Response of Soybean, Cotton, and Tobacco to Volatility of 2,4-D and Dicamba Formulations in Humidome","authors":"Estefania G. Polli, Travis W. Gannon, Mathieu LeCompte, Ronald R. Rogers, Daniel D. Beran","doi":"10.1017/wet.2023.86","DOIUrl":"https://doi.org/10.1017/wet.2023.86","url":null,"abstract":"2,4-D and dicamba are postemergence herbicides widely used to control broadleaf weed species in crop and non-crop areas in the United States. Currently, there are multiple formulations of 2,4-D and dicamba available in the market. Even though the active ingredient is the same, the chemical form may vary by formulation, which can influence the volatility potential of these herbicides. Therefore, the objective of this study was to evaluate the response of soybean, cotton, and tobacco plants exposed to vapor of 2,4-D and dicamba formulations alone or mixed in humidomes for 24 h. Humidome studies were conducted in an open pavilion at the Lake Wheeler Turfgrass Field Lab of the North Carolina State University in Raleigh, NC. Dicamba and mixture treatments injured and affected height of soybean. Injury varied from 55% to 70%, and average plant height was 8.8 cm lower when compared to the untreated control. 2,4-D treatments caused the lowest injury in soybean (≤ 21%), and differences among formulations were identified (dimethylamine &gt; choline &gt; dimethylamine-monomethylamine). However, soybean height was not affected by 2,4-D treatments. No differences between herbicide treatments were observed for cotton. The highest injury in tobacco was caused by dicamba dimethylamine (23.3%). Overall, the effect of 2,4-D and dicamba vapor was species-specific and formulation-dependent. Additionally, weather conditions in the humidomes possibly played a major role on the outcome of this study.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasticulture Banana Pepper Response to Clomazone Applied Pretransplanting (PRE) 塑料栽培香蕉辣椒对植前应用氯马唑酮的响应
IF 1.4 3区 农林科学
Weed Technology Pub Date : 2023-11-24 DOI: 10.1017/wet.2023.78
Jeanine Arana, Stephen L. Meyers, Emmanuel Cooper, Luis F. Medina, Josué Cerritos, Carlos A. López
{"title":"Plasticulture Banana Pepper Response to Clomazone Applied Pretransplanting (PRE)","authors":"Jeanine Arana, Stephen L. Meyers, Emmanuel Cooper, Luis F. Medina, Josué Cerritos, Carlos A. López","doi":"10.1017/wet.2023.78","DOIUrl":"https://doi.org/10.1017/wet.2023.78","url":null,"abstract":"Few published studies exist documenting banana pepper tolerance to clomazone. Therefore, field trials were conducted in 2022 at two Indiana locations [Meigs Horticulture Research Farm and the Pinney Purdue Agricultural Center (PPAC)] to evaluate crop safety in plasticulture-grown banana pepper. The experimental design was a split-plot in which the main plot factor was the clomazone rate (0, 840 and 1,680 g ai ha<jats:sup>-1</jats:sup>), and the subplot factor was cultivar (‘Pageant’ and ‘Sweet Sunset’). Clomazone was applied over-the-top of black polyethylene mulch-covered raised beds and their respective bare ground row middles one day prior to transplanting 12 pepper plants per subplot. Data collected included crop injury on a scale from 0% (no injury) to 100% (crop death) at 2, 4, and 6 wk after treatment (WAT), and plant stand. Two harvests were performed in which mature fruits were counted and weighed. Injury presented as interveinal bleaching only at PPAC 2 and 4 WAT. At this location 1,680 g ha<jats:sup>-1</jats:sup> clomazone resulted in greater injury to ‘Sweet Sunset’ at 2 and 4 WAT (53 and 15%, respectively) than to ‘Pageant’ (19 and 3%, respectively), however, plant stand and yield were not affected by either clomazone rate. These results suggest that the clomazone rate range currently used for bell pepper (280 to 1,120 g ai ha<jats:sup>-1</jats:sup>) can be applied prior to transplanting plasticulture-grown banana pepper with minimal crop injury and without reducing yield.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of quizalofop-p-ethyl with 2,4-D choline and/or glufosinate for control of volunteer corn in corn resistant to aryloxyphenoxypropionates quizalofp -p-ethyl与2,4- d胆碱和/或草铵膦的相互作用对抗芳氧苯氧丙酸玉米的控制
3区 农林科学
Weed Technology Pub Date : 2023-11-06 DOI: 10.1017/wet.2023.79
Mandeep Singh, Vipan Kumar, Stevan Z. Knezevic, Suat Irmak, John L. Lindquist, Santosh Pitla, Amit J. Jhala
{"title":"Interaction of quizalofop-p-ethyl with 2,4-D choline and/or glufosinate for control of volunteer corn in corn resistant to aryloxyphenoxypropionates","authors":"Mandeep Singh, Vipan Kumar, Stevan Z. Knezevic, Suat Irmak, John L. Lindquist, Santosh Pitla, Amit J. Jhala","doi":"10.1017/wet.2023.79","DOIUrl":"https://doi.org/10.1017/wet.2023.79","url":null,"abstract":"Corn resistant to aryloxyphenoxypropionates (FOPs) (Enlist™ corn) enables the use of quizalofop-p-ethyl (QPE) as a selective postemergence (POST) herbicide for control of glufosinate/glyphosate-resistant corn volunteers. Growers usually mix QPE with 2,4-D choline and/or glufosinate to achieve broad-spectrum weed control in Enlist™ corn. The objectives of this study were to (1) evaluate the efficacy of QPE applied alone or mixed with 2,4-D choline and/or glufosinate for control of glufosinate/glyphosate-resistant corn volunteers in Enlist™ corn and (2) determine the impact of application time (V3 or V6 growth stage of volunteer corn) of QPE-based treatments on volunteer corn control as well as Enlist™ corn injury and yield. Field experiments were conducted at South Central Agricultural Lab, Clay Center, NE in 2021 and 2022. Quizalofop-p-ethyl (46 or 93 g ai ha‒1) applied at V3 or V6 growth stage controlled volunteer corn ≥ 88% and ≥ 95% at 14 and 28 d after treatment (DAT), respectively. The QPE (46 g ai ha‒1) mixed with 2,4-D choline (800 g ae ha‒1) had 33% less expected control of V3 volunteer corn in 2021, and 8% less than expected control of V6 volunteer corn in 2022 at 14 DAT. Volunteer corn control was improved by 7%-9% using the higher rate of QPE (93 g ai ha‒1) in a mixture with 2,4-D choline (1,060 g ae ha‒1). The QPE mixed with glufosinate had an additive effect and interactions in any combinations were additive beyond 28 DAT. Mixing 2,4-D choline can reduce QPE efficacy on glufosinate/glyphosate-resistant corn volunteers up to 14 DAT when applied at the V3 or V6 growth stage; however, the antagonistic interaction did not translate into corn yield loss. Increasing the rate of QPE (93 g ai ha‒1) while mixing with 2,4-D choline can reduce antagonism.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of cover cropping and conservation tillage on weeds during the critical period for weed control in soybean 大豆杂草防治关键时期覆盖和保护性耕作对杂草的影响
3区 农林科学
Weed Technology Pub Date : 2023-11-06 DOI: 10.1017/wet.2023.82
Veronica Yurchak, Alan Leslie, Cerruti R.R. Hooks
{"title":"Influence of cover cropping and conservation tillage on weeds during the critical period for weed control in soybean","authors":"Veronica Yurchak, Alan Leslie, Cerruti R.R. Hooks","doi":"10.1017/wet.2023.82","DOIUrl":"https://doi.org/10.1017/wet.2023.82","url":null,"abstract":"Abstract Limited research has been directed at evaluating the ability of single cover crop plantings to suppress weeds in crops beyond the initial field season. Thus, this experiment was conducted to investigate the ability of a second-year self-regenerated annual and second-year perennial cover crop planting to suppress weeds during the critical period for weed control (CPWC) in soybean. Whole plot treatments included: (1) conventional till, (2) no-till with cover crop residue, (3) living mulch + cover crop residue, and (4) living mulch + winter killed residue. Sub-plot treatments involved weed management intensity: a) no weed management (weedy), b) weeds manually removed through the CPWC (third node soybean stage; V3), and c) weeds manually removed until soybean canopy closure (weed-free). Overall, total annual cover crop biomass during the second field season was comparable to biomass obtained from direct seeded stands during the initial field season. All cover crop treatments reduced total weed biomass through the CPWC compared to conventional till. Soybean yield was low across all treatments in this experiment. Still, yield was similar between cover crop and conventional till treatments at one site-year, however, yields were lower in all cover crop treatments at the other site-year.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and Yield Response of Peanut to Simulated Drift of Glufosinate at Vegetative and Reproductive Growth Stages 花生营养生长期和生殖生长期对草铵膦模拟漂移的生长和产量响应
3区 农林科学
Weed Technology Pub Date : 2023-11-06 DOI: 10.1017/wet.2023.81
Olumide S. Daramola, Navjot Singh, Joseph E. Iboyi, Pratap Devkota
{"title":"Growth and Yield Response of Peanut to Simulated Drift of Glufosinate at Vegetative and Reproductive Growth Stages","authors":"Olumide S. Daramola, Navjot Singh, Joseph E. Iboyi, Pratap Devkota","doi":"10.1017/wet.2023.81","DOIUrl":"https://doi.org/10.1017/wet.2023.81","url":null,"abstract":"Abstract The increased incidence of glyphosate-resistant weeds has led to an exponential increase in the use of glufosinate in glufosinate-resistant corn, cotton, and soybean. Field experiments were conducted in 2021 and 2022 to evaluate peanut response to glufosinate at 25 and 60 d after planting, corresponding to vegetative (V3) and reproductive (R4) growth stages, at 1.2, 4.7, 18.9, 75.5, and 302 g ai ha -1 representing 1/514 to 1/2 of the labeled rate of 604 g ha -1 . Peanut injury and canopy and yield reductions from glufosinate were <10% when applied at 1.2, 4.7, and 18.9 g ha -1 . However, at 75.5 and 302 g ha -1 peanut injury ranged from 24% to 72% for V3 exposure timing and 33% to 54% for R4 exposure timing. Similarly, glufosinate at 75.5 and 302 g ha -1 reduced peanut canopy width by 10% to 23% for V3 exposure timing and 43% to 57% for R4 exposure timing. Averaged across exposure timing, peanut yield was reduced by 15% and 61% at 75.5 and 302 g ha -1 , respectively. Averaged across rates, peanut yield reduction was 18% for V3 exposure timing, with glufosinate at 298 g ha -1 required to cause an estimated 50% reduction in yield. For R3 exposure timing, peanut yield reduction was 20%, with glufosinate at 243 g ha -1 required to cause an estimated 50% reduction in yield. There was no difference in Normalized Difference Vegetative Index (NDVI) between untreated plants and peanut exposed to glufosinate at 1.2, 4.7, and 18.9 g ha -1 . However, peanut exposed to glufosinate at 75.5 and 302 g ha -1 were distinguished from untreated plants with lower NDVI values. Based on Pearson’s Rho correlation coefficient, the best timing for assessing potential yield reduction based on injury was between 2 and 4 wk after treatment.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135633983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of inquiries on weed control efficacy of XtendiMax® herbicide with VaporGrip® technology 应用VaporGrip技术对XtendiMax除草剂除草效果的调查研究
3区 农林科学
Weed Technology Pub Date : 2023-11-06 DOI: 10.1017/wet.2023.83
Aruna Varanasi, Daljit Singh, Jenny Krebel, Jeffrey Herrmann, John Willis, Greg Elmore, Joshua Fischer, Ty Witten, Graham Head, Chandrashekar Aradhya
{"title":"Investigation of inquiries on weed control efficacy of XtendiMax<sup>®</sup> herbicide with VaporGrip<sup>®</sup> technology","authors":"Aruna Varanasi, Daljit Singh, Jenny Krebel, Jeffrey Herrmann, John Willis, Greg Elmore, Joshua Fischer, Ty Witten, Graham Head, Chandrashekar Aradhya","doi":"10.1017/wet.2023.83","DOIUrl":"https://doi.org/10.1017/wet.2023.83","url":null,"abstract":"Abstract Herbicide resistance in weeds significantly threatens crop production in the United States. The introduction of dicamba-resistant soybean and cotton stacked with other herbicide tolerance traits has provided farmers with the flexibility to use multiple herbicide options to diversify their weed management practices and delay resistance evolution. XtendiMax ® herbicide with VaporGrip ® Technology is a dicamba formulation registered for use in dicamba-resistant soybean and cotton by the United States Environmental Protection Agency (US-EPA). One of the terms of its registration includes evaluating inquiries on reduced weed control efficacy by growers or users of XtendiMax for suspected weed resistance. A total of 3555 product performance inquiries (PPIs) were received from 2018 to 2021 regarding reduced weed control efficacy by dicamba. Following Norsworthy criteria recommended by US-EPA, for screening of suspected resistance in the field, a total of 103 weed accessions from sixty-three counties in 13 states were collected for greenhouse testing over those 4 years. Collection of weed accession(s) for greenhouse testing was made only in states where resistance to dicamba was not yet confirmed in the weed species under investigation. The accessions, which consisted primarily of waterhemp and Palmer amaranth, were treated with dicamba at 560g ae ha -1 and 1120g ae ha -1 rates. All weed accessions except for an accession each of Palmer amaranth and waterhemp, were controlled ≥90% by dicamba at 21 days after treatment in the greenhouse.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Preemergence- and Postemergence-Applied Oxyfluorfen in Rice Compared to Current Standards 水稻出生前和出生前施氟醚与现行标准的效果比较
3区 农林科学
Weed Technology Pub Date : 2023-11-06 DOI: 10.1017/wet.2023.84
Casey H. Arnold, Jason K. Norsworthy, Thomas R. Butts, Trenton L. Roberts, Nick R. Bateman, Chad W Shelton
{"title":"Effectiveness of Preemergence- and Postemergence-Applied Oxyfluorfen in Rice Compared to Current Standards","authors":"Casey H. Arnold, Jason K. Norsworthy, Thomas R. Butts, Trenton L. Roberts, Nick R. Bateman, Chad W Shelton","doi":"10.1017/wet.2023.84","DOIUrl":"https://doi.org/10.1017/wet.2023.84","url":null,"abstract":"Abstract Control of barnyardgrass is becoming increasingly difficult as plants evolve resistance to herbicides. ROXY oxyfluorfen-resistant rice (ROXY ® Rice Production System) has been developed to allow for an alternative mode of action to control barnyardgrass and other weeds. In 2021 and 2022, field trials were conducted at the Pine Tree Research Station near Colt, AR, the Northeast Research and Extension Center in Keiser, AR, and the University of Arkansas Pine Bluff Small Farm Research Center near Lonoke, AR to determine the level of weed control and crop tolerance following oxyfluorfen applied preemergence or postemergence relative to herbicides currently labeled for use in rice. When applied post-plant preemergence on silt loam soil, oxyfluorfen alone at 1,120 and 1,680 g ai ha -1 resulted in barnyardgrass control comparable to clomazone alone at 336 g ha -1 . Still, injury to rice was often greater than with clomazone, ranging from 20% to 45%. On clay soil, oxyfluorfen at 1,680 g ha -1 resulted in barnyardgrass control comparable to clomazone alone in both site-years at three weeks after emergence but caused up to 18% injury to rice. When oxyfluorfen was applied at 560 to 1,680 g ha -1 at the 2-leaf rice growth stage, barnyardgrass control was ≥85% in three of four site-years one week after treatment. However, injury to rice ranged from 38% to 73% for the rates evaluated. Propanil caused the greatest injury by a herbicide currently labeled for use in rice at 34%. Oxyfluorfen should be used as a post-plant preemergence herbicide rather than a postemergence herbicide due to the injury observed after a postemergence application. The data indicates that if used as a preemergence herbicide, oxyfluorfen should be applied at 560 g ha -1 to reduce the injury observed on silt loam and clay soils.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135633984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Herbicide effects on dormant and post-dormant hybrid bermudagrass putting green turf 除草剂对休眠和休眠后杂交百慕草铺绿草坪的影响
3区 农林科学
Weed Technology Pub Date : 2023-10-23 DOI: 10.1017/wet.2023.65
John M Peppers, Shawn D Askew
{"title":"Herbicide effects on dormant and post-dormant hybrid bermudagrass putting green turf","authors":"John M Peppers, Shawn D Askew","doi":"10.1017/wet.2023.65","DOIUrl":"https://doi.org/10.1017/wet.2023.65","url":null,"abstract":"Abstract Herbicide resistance coupled with a dearth of selective herbicide options has increased complexity of annual bluegrass control in hybrid bermudagrass putting greens. Cumyluron, endothall, and methiozolin are herbicides that have controlled annual bluegrass by inhibiting sites of action that are novel compared to herbicides currently used for turfgrass management in the US. However, peer-reviewed literature has no information on hybrid bermudagrass putting green tolerance to these herbicides. Sixteen field studies were established on eight golf greens in Midlothian, VA, in 2021 and 2022 to evaluate effects of cumyluron, endothall, methiozolin, pronamide and trifloxysulfuron on bermudagrass spring transition. The 16 studies were split equally between initiation during full dormancy versus mid-spring transition. Methiozolin applied at 500 and 1000 g ai ha -1 typically increased the heat units (growing degree days with a base temperature of 15 C) required for hybrid bermudagrass to visibly achieve 90% green coverage (T 90 ) when applied to fully dormant hybrid bermudagrass. This delay in green coverage was more pronounced at sites where hybrid bermudagrass vigor was seemingly reduced via abiotic stressors. Endothall was generally more injurious than all other treatments when applied to hybrid bermudagrass during mid-transition. Endothall applied at 840 g ai ha -1 injured hybrid bermudagrass for 0 to 9 d over a threshold of 30% (DOT 30 ), depending on location. In two site-years characterized by increased abiotic stress, methiozolin applied at 1000 g ai ha -1 caused 44 DOT 30 . Cumyluron never injured hybrid bermudagrass over 30% or delayed T 90 regardless of application timing. These results indicate methiozolin should only be applied within labeled rates to actively growing hybrid bermudagrass putting greens, cumyluron can be safely applied at 6450 g ai ha -1 on dormant or actively growing bermudagrass greens, and endothall applications should be limited to dormant bermudagrass greens unless transient phytotoxicity is acceptable.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135405829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfentrazone Crop Safety and Efficacy in Cabbage and Broccoli 磺胺酮在白菜和西兰花中的安全性和有效性
3区 农林科学
Weed Technology Pub Date : 2023-10-23 DOI: 10.1017/wet.2023.75
Laura Pineda-Bermudez, Thierry E. Besançon, Lynn M. Sosnoskie
{"title":"Sulfentrazone Crop Safety and Efficacy in Cabbage and Broccoli","authors":"Laura Pineda-Bermudez, Thierry E. Besançon, Lynn M. Sosnoskie","doi":"10.1017/wet.2023.75","DOIUrl":"https://doi.org/10.1017/wet.2023.75","url":null,"abstract":"Abstract In 2021 and 2022, research was initiated to evaluate the efficacy and safety of sulfentrazone in transplanted cabbage and broccoli. Treatments included oxyfluorfen at 560 g ha -1 pre-transplant (PRE-T), sulfentrazone at 116 or 233 g ha -1 PRE-T, and S -metolachlor at 715 g ha -1 immediately applied after transplanting (POST-T) followed by (fb) oxyfluorfen at 210 g ha -1 postemergence (POST) 14 d after planting (DAP). Concerning weed cover, the weedy non-treated plots averaged between 6% (14 DAP) and 72% (42 DAP); all herbicide-treated plots averaged less than 30% cover at 42 DAP. At 14 and 28 DAP, oxyfluorfen, S –metolachlor fb oxyfluorfen, and sulfentrazone high rate reduced total monocotyledonous and dicotyledonous weed densities 62 and 100% relative to the non-treated control. Hairy galinsoga (NJ) and combined ladysthumb and prostrate knotweed (NY) density was reduced 71 to 99%. Except for the low rate of sulfentrazone, all herbicide treatments reduced weed biomass at harvest ≥ 88%. Crop injury varied in response to herbicide treatments or weed competition but was also affected by crop and location. Between 14 and 28 DAP, the greatest amount of stunting (22%) was noted in the S -metolachlor fb oxyfluorfen treatments for both locations. Averaged over treatments, greater stunting was observed in broccoli as compared to cabbage in NY, whereas stunting estimates were higher for cabbage in NJ. All NJ treatments significantly increased cabbage yield and broccoli and cabbage head sizes relative to the non-treated control. No yield difference was noted between herbicide treatments and the non-treated check in NY. Data derived from these studies will be used to enhance crop safety recommendations in Northeast production environments for sulfentrazone used PRE in transplanted cabbage and support a potential label for broccoli.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信