{"title":"Group Models of Artificial Polynomial and Trigonometric Higher Order Neural Networks","authors":"","doi":"10.4018/978-1-7998-3563-9.ch003","DOIUrl":"https://doi.org/10.4018/978-1-7998-3563-9.ch003","url":null,"abstract":"Real-world financial data is often discontinuous and non-smooth. Neural network group models can perform this function with more accuracy. Both polynomial higher order neural network group (PHONNG) and trigonometric polynomial higher order neural network group (THONNG) models are studied in this chapter. These PHONNG and THONNG models are open box, convergent models capable of approximating any kind of piecewise continuous function, to any degree of accuracy. Moreover, they are capable of handling higher frequency, higher order nonlinear, and discontinuous data. Results confirm that PHONNG and THONNG group models converge without difficulty and are considerably more accurate (0.7542% - 1.0715%) than neural network models such as using polynomial higher order neural network (PHONN) and trigonometric polynomial higher order neural network (THONN) models.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115208637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data Classification Using Ultra-High Frequency SINC and Trigonometric Higher Order Neural Networks","authors":"","doi":"10.4018/978-1-7998-3563-9.ch007","DOIUrl":"https://doi.org/10.4018/978-1-7998-3563-9.ch007","url":null,"abstract":"This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125029483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}