{"title":"基于超高频SINC和三角高阶神经网络的数据分类","authors":"","doi":"10.4018/978-1-7998-3563-9.ch007","DOIUrl":null,"url":null,"abstract":"This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Classification Using Ultra-High Frequency SINC and Trigonometric Higher Order Neural Networks\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-3563-9.ch007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.\",\"PeriodicalId\":236860,\"journal\":{\"name\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3563-9.ch007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Classification Using Ultra-High Frequency SINC and Trigonometric Higher Order Neural Networks
This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.