基于超高频SINC和三角高阶神经网络的数据分类

{"title":"基于超高频SINC和三角高阶神经网络的数据分类","authors":"","doi":"10.4018/978-1-7998-3563-9.ch007","DOIUrl":null,"url":null,"abstract":"This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Classification Using Ultra-High Frequency SINC and Trigonometric Higher Order Neural Networks\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-3563-9.ch007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.\",\"PeriodicalId\":236860,\"journal\":{\"name\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3563-9.ch007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章发展了一种新的非线性模型,超高频正弦三角高阶神经网络(UNT-HONN),用于数据分类。UNT-HONN包括超高频正弦和正弦高阶神经网络(UNS-HONN)和超高频正弦和余弦高阶神经网络(UNC-HONN)。使用uncs - honn和uncs - honn模型进行了数据分类测试。结果表明,UNS-HONN和UNC-HONN模型比其他多项式高阶神经网络(PHONN)和三角高阶神经网络(THONN)模型更准确,因为UNS-HONN和UNC-HONN模型的分类误差接近10-6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Classification Using Ultra-High Frequency SINC and Trigonometric Higher Order Neural Networks
This chapter develops a new nonlinear model, ultra high frequency sinc and trigonometric higher order neural networks (UNT-HONN), for data classification. UNT-HONN includes ultra high frequency sinc and sine higher order neural networks (UNS-HONN) and ultra high frequency sinc and cosine higher order neural networks (UNC-HONN). Data classification using UNS-HONN and UNC-HONN models are tested. Results show that UNS-HONN and UNC-HONN models are more accurate than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UNS-HONN and UNC-HONN models can classify data with error approaching 10-6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信