{"title":"Performance evaluation of the amperometric total residual oxidant sensor with the electrochlorination-based Ballast Water Management System.","authors":"Xunzhou Li, Jinjin Song, Fengqi Xu, Ying Li, Tingyong Wang, Zhilei Wang, Wei Liu, Chao Li","doi":"10.2166/wst.2025.006","DOIUrl":"https://doi.org/10.2166/wst.2025.006","url":null,"abstract":"<p><p>Nowadays, performance studies on the amperometric total residual oxidant (TRO) sensor are only in the bench test stage and have not been conducted under specific maritime conditions with Ballast Water Management System (BWMS). In this study, the application of the amperometric TRO sensor in land-based biological efficacy (BE) testing, operation and maintenance (O&M) testing, as well as shipboard (SB) testing, was explored by comparing with the existing di-phenylene-diamine (DPD) TRO sensor. The results showed that the average TRO measurement deviation between the amperometric sensor and the DPD sensor was within ±10% in valid BE test cycles and the O&M testing exceeding 47 operating hours. The TRO value measured by amperometric sensor exhibited significant fluctuations, but the improved control logic could achieve smoothing out the fluctuation, with stability comparable to or even higher than that of the DPD sensor. The practicality and reliability of the amperometric sensor in electrochlorination-based BWMS were further verified through SB testing.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"192-201"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant.","authors":"Meryem Jemli, Fatma Karray, Lamjed Mansour, Slim Loukil, Rihab Bouhdida, Krishna Kumar Yadav, Sami Sayadi","doi":"10.2166/wst.2024.364","DOIUrl":"https://doi.org/10.2166/wst.2024.364","url":null,"abstract":"<p><p>This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days. Over the following 170 days, the operational organic loading rates of the TF and the CSTR were around 1,200 and 3,000 g chemical oxygen demand (COD) m<sup>-3</sup> day<sup>-1</sup>, respectively. The treatment efficiency was 94% for total petroleum hydrocarbons (TPHs), 89.5% for COD, 83.34% for biological oxygen demand (BOD<sub>5</sub>), and 91.25% for phenol. Treated industrial wastewater from the TF was used for bioaugmentation (BA) of contaminated soil. The assessment of the soil took 24 weeks to complete. The effectiveness of the soil BA strategy was confirmed by monitoring phenolic compounds, aliphatic and polycyclic aromatic hydrocarbons, heavy metals, and germination index. The biodegradation rate of contaminants was improved and the time required for their removal was reduced. The soil bacterial communities were dominated by species of the genera <i>Mycobacterium, Proteiniphilum, Nocardioides, Luteimicrobium</i>, and <i>Azospirillum</i>, which were identified as hydrocarbon and phenol-degrading bacteria.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"139-159"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematic bibliographic analysis of heavy metal remediation.","authors":"Shan Chen, Yuanzhao Ding","doi":"10.2166/wst.2024.396","DOIUrl":"https://doi.org/10.2166/wst.2024.396","url":null,"abstract":"<p><p>Heavy metals pose a significant threat to human health, with contaminated water sources linked to severe conditions, including gastric cancer. Consequently, the effective remediation of heavy metals is crucial. This study employs a bibliographic analysis to examine key methodologies, leading organizations, and prominent countries involved in heavy metal remediation. By systematically reviewing around 1,000 records, the paper identifies the most critical remediation techniques and provides a comprehensive overview of current practices in the field. Additionally, the study explores prospects, emphasizing the potential of emerging technologies such as big data and machine learning to enhance remediation efforts. It highlights recent advancements, identifies significant trends, such as the growing use of bioremediation and nanotechnology, and addresses critical challenges in the remediation landscape, including regulatory hurdles and technological limitations. By making stronger connections between the identified trends and their implications for future research, this comprehensive analysis aims to provide valuable insights and guide the development of improved strategies for mitigating the impact of heavy metal contamination, ultimately safeguarding public health.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"56-68"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.","authors":"Pitchaiah Sudalaimuthu, Ravishankar Sathyamurthy, Ammar Elshiekh","doi":"10.2166/wst.2024.399","DOIUrl":"https://doi.org/10.2166/wst.2024.399","url":null,"abstract":"<p><p>This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes. The review also explores cost reduction strategies, such as integrating hydrogen production and mineral recovery from desalination by-products. Passive technologies and process optimization are proposed to minimize operational costs and energy consumption, supporting long-term sustainability. This review serves as a resource for decision-makers, offering insights into the strategic use of NPP waste heat in desalination to address water scarcity while promoting energy efficiency and sustainability.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"1-11"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irina Cobos, Miriam Orrantia, Denisse Serrano-Palacios, Edna R Meza, Miguel A Armenta, Vianey A Burboa, Luis H Alvarez
{"title":"Anthraquinone-2-sulfonate immobilized on granular activated carbon inhibits methane production during the anaerobic digestion of swine wastewater.","authors":"Irina Cobos, Miriam Orrantia, Denisse Serrano-Palacios, Edna R Meza, Miguel A Armenta, Vianey A Burboa, Luis H Alvarez","doi":"10.2166/wst.2025.001","DOIUrl":"https://doi.org/10.2166/wst.2025.001","url":null,"abstract":"<p><p>Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC. Despite the improvement in the ETC, the GAC-AQS cultures showed an inhibitory effect, evidenced by the lowest methane productivity. Indeed, the cultures with unmodified GAC achieved 236 mL CH<sub>4</sub>/g COD<sub>i</sub> (chemical oxygen demand, initial), representing an increment of 1.14- and 2.05-fold compared with the control (without conductive materials) and GAC-AQS, respectively. In addition, the methane production rate (<i>R</i><sub>max</sub>) and yield were also improved with unmodified GAC, but they decreased with GAC-AQS. The role of solid-phase AQS (GAC-AQS) as a terminal electron acceptor during microbial respiration competes with methanogenesis for the electrons instead of serving as an electron conduit.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"117-125"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evelina Koltsova, Roman Smotraiev, Anastasiia Nehrii, Malik Zhekeev, Harsha Ratnaweera
{"title":"Mechanisms for removing phosphorus species through sequential coagulation using inorganic coagulants and organic polymers.","authors":"Evelina Koltsova, Roman Smotraiev, Anastasiia Nehrii, Malik Zhekeev, Harsha Ratnaweera","doi":"10.2166/wst.2024.401","DOIUrl":"https://doi.org/10.2166/wst.2024.401","url":null,"abstract":"<p><p>The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency. Particle and turbidity removal is more influenced by polymer charge density than molecular weight, while orthophosphate (OP) removal is linked to a change in zeta potential from negative to positive, allowing additional OP binding through complex formation with hydrolysis products and polymers. Enhanced phospholipid (PL) removal likely results from adsorption and neutralization of micelle PL charges by intermediate positively charged aluminum hydroxyphosphate ions. Higher PL removal with low ALS doses is attributed to a two-stage dosing process that optimizes coagulant and polymer dosages. The combined removal of OP and PL improves phosphorus bioavailability, increasing the sludge's fertilizer value.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"202-218"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossein Mohammadpour, Ka Yu Cheng, Almantas Pivrikas, Goen Ho
{"title":"A review of biogas upgrading technologies: key emphasis on electrochemical systems.","authors":"Hossein Mohammadpour, Ka Yu Cheng, Almantas Pivrikas, Goen Ho","doi":"10.2166/wst.2024.394","DOIUrl":"https://doi.org/10.2166/wst.2024.394","url":null,"abstract":"<p><p>Biogas, consisting mainly of CO<sub>2</sub> and CH<sub>4</sub>, offers a sustainable source of energy. However, this gaseous stream has been undervalued in wastewater treatment plants owing to its high CO<sub>2</sub> content. Biogas upgrading by capturing CO<sub>2</sub> broadens its utilisation as a substitute for natural gas. Although biogas upgrading is a widely studied topic, only up to 35% of produced raw biogas is upgraded in the world. To open avenues for development research on biogas upgrading, this paper reviews biogas as a component in global renewable energy production and upgrading technologies focusing on electrochemically driven CO<sub>2</sub> capture systems. Recent progress in electrochemical CO<sub>2</sub> separation including its energy requirement, CO<sub>2</sub> recovery rate, and challenges for upscaling are critically explored. Electrochemical CO<sub>2</sub> separation systems stand out for achieving the most affordable technology among the upgrading systems with a low net energy requirement of 0.25 kWh/kg CO<sub>2</sub>. However, its lower CO<sub>2</sub> recovery rate compared to conventional technologies, which leads to high capital expenditure limits the commercialisation of this technology. In the last part of this review, the future perspectives to overcome the challenges associated with electrochemical CO<sub>2</sub> capture are discussed.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"93-116"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CFD simulation of turbulent mass transfer of H<sub>2</sub>S and O<sub>2</sub> in a stirring tank.","authors":"Katharina Teuber, Abhinav Dixit, Reinhard Hinkelmann","doi":"10.2166/wst.2024.406","DOIUrl":"https://doi.org/10.2166/wst.2024.406","url":null,"abstract":"<p><p>This study explores the computational fluid dynamics (CFD) simulation of oxygen (O<sub>2</sub>) and hydrogen sulfide (H<sub>2</sub>S) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of H<sub>2</sub>S and O<sub>2</sub>. The investigation highlights the impact of turbulence on mass transfer coefficients, confirming the reliability of the solvers for predicting mass transfer in turbulent conditions. The results suggest that these CFD models can serve as effective tools for understanding and optimizing sewer system designs. Additionally, the study highlights the potential of numerical simulations to reduce the need for extensive and potentially hazardous laboratory experiments.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"69-82"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degradation of aliphatic and aromatic hydrocarbon mixture by a <i>Rhodococcus</i> sp.","authors":"Xing Zhang, Jie Qin","doi":"10.2166/wst.2024.403","DOIUrl":"https://doi.org/10.2166/wst.2024.403","url":null,"abstract":"<p><p><i>Rhodococcus</i> sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined. The results showed that the degradation of phenanthrene was enhanced in the presence of hexadecane or tetradecane due to increased bioavailability and improved cell surface hydrophobicity, which facilitated better substrate uptake. Conversely, the degradation of hexadecane and tetradecane decreased in the presence of aromatic hydrocarbons, likely due to the cometabolic effect, metabolic regulation, substrate competition, and the shift in enzyme activity. Moreover, the removal of 4.4 g L<sup>-1</sup> diesel fuel, a complex mixture of aliphatic hydrocarbons and aromatic hydrocarbons, was investigated and 63.7% of oil contents were depleted within 96 h. Therefore, strain p52 showed the potential to remove petroleum pollutants.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"12-20"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals.","authors":"Fahim Muntasir Rabbi, Md Kamrul Hasan, Md Alinur Rahman, Md Salamoon Islam, Pramit Kumar Shohugh, Md Istiak Ahmed, Md Washim Khan, Tanvir Rafi, Mohammad Mahfuzur Rahman, Md Hasibur Rahaman, Jun Zhai","doi":"10.2166/wst.2024.404","DOIUrl":"https://doi.org/10.2166/wst.2024.404","url":null,"abstract":"<p><p>Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes, <i>Canna indica</i> and <i>Hymenocallis littoralis</i> were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"21-39"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}