2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)最新文献

筛选
英文 中文
Topology optimization of a fully compliant prosthetic finger: Design and testing 全柔顺假指的拓扑优化:设计与测试
Yang Zheng, L. Cao, Zhiqin Qian, Ang Chen, W. Zhang
{"title":"Topology optimization of a fully compliant prosthetic finger: Design and testing","authors":"Yang Zheng, L. Cao, Zhiqin Qian, Ang Chen, W. Zhang","doi":"10.1109/BIOROB.2016.7523766","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523766","url":null,"abstract":"Traditional prosthetic fingers use rigid links and kinematic joints, which lead to the fingers that lack adaptability. This paper presents a new design of fingers which are fully compliant for prosthetic applications. A home-based topology optimization method was used for the structural synthesis and dimensional analysis in order to determine the topology and geometry of the finger. A prototype was manufactured and experimented for its performance. In order to evaluate the performance of the prosthetic finger, the forces and displacements of the input end and output were measured. A spring was attached at the output end to mimic the stiffness of the work-piece in order to evaluate the grasping ability. Finite element analysis was also performed to compare with the experimental results. It was found that the compliant prosthetic finger met the design requirements and overcome some problems present in the traditional prosthetic fingers. The home-made topology optimization method is reliable for the design of prosthetic finger.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113937342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A novel spiking CPG-based implementation system to control a lamprey robot 基于cpg的新型七鳃鳗机器人控制实现系统
Elisa Donati, G. Indiveri, C. Stefanini
{"title":"A novel spiking CPG-based implementation system to control a lamprey robot","authors":"Elisa Donati, G. Indiveri, C. Stefanini","doi":"10.1109/BIOROB.2016.7523822","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523822","url":null,"abstract":"The study proposed describes preliminary results of a spiking implementation of lamprey's Central Pattern Generator (CPG) using Neuromorphic VLSI devices. Several robotic lamprey implementations have been built to test the models in a bio-mimetic artifact but, in these systems there is a clear separation between the mechanical system, and their control part. This study aims to implement a CPG hardware network, to directly control actuators, creating a biomimetic robot both from mechanical and electronic point of view.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122640776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Automatic estimate of back anatomical landmarks and 3D spine curve from a Kinect sensor 从Kinect传感器自动估计背部解剖标志和3D脊柱曲线
V. Bonnet, Takazumi Yamaguchi, A. Dupeyron, S. Andary, Antoine Seilles, P. Fraisse, G. Venture
{"title":"Automatic estimate of back anatomical landmarks and 3D spine curve from a Kinect sensor","authors":"V. Bonnet, Takazumi Yamaguchi, A. Dupeyron, S. Andary, Antoine Seilles, P. Fraisse, G. Venture","doi":"10.1109/BIOROB.2016.7523746","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523746","url":null,"abstract":"This study aims to develop and evaluate a new method for the automatic extraction and estimate of back anatomical landmark positions and of 3D spine curve from Kinect sensor data. The proposed method allows to robustly reconstruct different indexes of back deformity used in the evaluation of scoliosis. The algorithm input data are the depth map and its corresponding curvature map. From these, regions-of-interest are automatically created and anatomical landmark positions are estimated by finding common patterns between subjects. The results showed that the proposed method can successfully estimate the anatomical landmark positions, as well as the 3D spine curve (average RMS error of 8 mm and 3 mm). The simplicity and generalisation abilities of the proposed method allow to pave the way of future diagnosis solutions for in-home or for small size practice use.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115134275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Feedback methods for collision avoidance using virtual fixtures for robotic neurosurgery in deep and narrow spaces 基于虚拟夹具的深、窄空间神经外科机器人避碰反馈方法
A. Nakazawa, K. Nanri, K. Harada, Shinichi Tanaka, H. Nukariya, Y. Kurose, Naoyuki Shono, Hirohumi Nakatomi, A. Morita, Eiju Watanabe, N. Sugita, M. Mitsuishi
{"title":"Feedback methods for collision avoidance using virtual fixtures for robotic neurosurgery in deep and narrow spaces","authors":"A. Nakazawa, K. Nanri, K. Harada, Shinichi Tanaka, H. Nukariya, Y. Kurose, Naoyuki Shono, Hirohumi Nakatomi, A. Morita, Eiju Watanabe, N. Sugita, M. Mitsuishi","doi":"10.1109/BIOROB.2016.7523632","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523632","url":null,"abstract":"Robotic assistance enables a surgeon to perform dexterous and precise manipulations. However, conducting robot assisted neurosurgery within the deep and narrow spaces of the brain presents the risk of unexpected collisions between the shafts of robotic instruments and their surroundings out of the microscopic view. Thus, we propose the provision of feedback using a truncated cone shaped virtual fixture generated by marking the edges of the top and bottom plane of a workspace in the deep and narrow spaces within the brain with the slave manipulator. The experimental results show that the virtual fixture generation method could precisely model the workspace. We also implemented force feedback, visual feedback, and motion scaling feedback in the microsurgical robotic system in order to inform the surgeon of the risk of collision. Performance of each feedback method and their combinations was evaluated in two experiments. The experimental results showed that the combination of the force and the visual feedback methods were the most beneficial for avoiding collisions.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133187964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Localized Extreme Learning Machine for online inverse dynamic model estimation in soft wearable exoskeleton 柔性可穿戴外骨骼动态模型在线逆估计的局部极限学习机
B. Dinh, L. Cappello, L. Masia
{"title":"Localized Extreme Learning Machine for online inverse dynamic model estimation in soft wearable exoskeleton","authors":"B. Dinh, L. Cappello, L. Masia","doi":"10.1109/BIOROB.2016.7523688","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523688","url":null,"abstract":"In recent years, actuation technology have been increasingly developed new fields and utilized widely in applications differing from automation and industry , but also robotic rehabilitation, haptics and wearable exoskeleton devices where safety, limitation of peak forces and gentle interaction are extremely important. To date, several examples of robotic applications have been designed to address the demanding needs of these disciplines that require the compliance in actuation and manipulation. However, the control performance is still limited due to lack of accuracy in robotic dynamics model and unmodeled nonlinearities such as friction. In such cases, estimating inverse dynamic model from collected data will provide an interesting alternative solution in order to achieve the compliance interaction and the good performance in position tracking. In this paper, an algorithm for online robotic inverse dynamics learning is proposed and explained using localization approach combined with Extreme Learning Machine.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132245885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground 基于逆最优控制的人在平地上全身行走最优准则辨识
Debora Clever, R. M. Schemschat, Martin L. Felis, K. Mombaur
{"title":"Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground","authors":"Debora Clever, R. M. Schemschat, Martin L. Felis, K. Mombaur","doi":"10.1109/BIOROB.2016.7523793","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523793","url":null,"abstract":"Understanding the underlying concepts of human locomotion is important for many fields of research. Based on the assumption that human motions are optimal, we propose an inverse optimal control (IOC) based approach to identify the optimality criteria in human walking. To this end, human walking is modeled as a non-linear optimal control problem with a linear combination of elementary optimality functions as objective and a hybrid dynamics multi-body system as constraints. The developed IOC-framework is set up in a modular way and exploits the natural bi-level structure of the problem. It allows for a great flexibility in the choice of outer optimization techniques and inner dynamic models. In the present work, we use the developed IOC approach to identify weights of seven elementary criteria for seven walking motions captured from six different subjects. The considered optimality criteria address the minimization of joint torques for four sets of joints, head stabilization, the step length, and the step frequency. For all trials the algorithm performs successfully. Even though the identified weights differ observably between subjects, which explains the different walking styles, the correlation matrix gives rise to the hypothesis that there exists a significant correlation of optimality across subjects. The identification of optimality criteria in human walking is a very important issue for all disciplines, where a prediction of human behavior is needed. For example in medical applications to improve therapies or to develop new mobility devices, in sport science to improve training plans or in humanoid robotics to develop new walking strategies.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115700302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Effect of anodal tDCS on human prefrontal cortex observed by fNIRS fNIRS观察阳极tDCS对人前额叶皮层的影响
M. R. Bhutta, Seong-Woo Woo, Muhammad Jawad Khan, K. Hong
{"title":"Effect of anodal tDCS on human prefrontal cortex observed by fNIRS","authors":"M. R. Bhutta, Seong-Woo Woo, Muhammad Jawad Khan, K. Hong","doi":"10.1109/BIOROB.2016.7523752","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523752","url":null,"abstract":"Transcranial direct current stimulation (tDCS) is one of the noninvasive brain stimulation methods that have been used to study many neuropsychiatric and neurological disorders in humans. tDCS can excite or inhibit the neurons depending upon its polarity. In this study, we have investigated the effect of anodal tDCS on human prefrontal cortex using functional near-infrared spectroscopy (fNIRS), which is a noninvasive neuroimaging technique. We have developed a new wireless fNIRS system compatible with EEG, and also developed a pad-type tDCS with variable current limits. Our wireless fNIRS system is composed of a microcontroller, an optical probe, tri-wavelength light emitting diodes (LEDs), photodiodes, WiFi communication module and battery. The developed tDCS system can generate the current in the range of 0.8 ~ 2.2 mA. To test the functionality of the systems, fNIRS data was recorded before and after the tDCS stimulation. The results of this study show that the anodal tDCS excites the neurons in the region of interest and this excitability is monitored using the fNIRS system.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114249091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Design and evaluation of a vibrotactile feedback system to improve volitional myoelectric control for robotic transtibial prostheses: A preliminary study 一种振动触觉反馈系统的设计与评估,以改善机器人胫骨假体的意志肌电控制:初步研究
Baojun Chen, Qining Wang
{"title":"Design and evaluation of a vibrotactile feedback system to improve volitional myoelectric control for robotic transtibial prostheses: A preliminary study","authors":"Baojun Chen, Qining Wang","doi":"10.1109/BIOROB.2016.7523769","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523769","url":null,"abstract":"In this paper, we propose a vibrotactile stimulation system and explore the potential of combining it with volitional myoelectric control for robotic transtibial prostheses. The proposed system consists of six vibrators, three on the anterior side of the thigh and the other three on the posterior side. Six able-bodied subjects and two transtibial amputee subjects participated in the study, and three experiments were performed. The first two experiments were designed to evaluate subjects' ability to perceive vibrotactile stimulations and make fast response. In the third experiment, we aimed to investigate the necessity of adding vibrotactile feedback to the loop of volitional myoelectric control. Experimental results indicate that subjects are able to discriminate stimulations produced by different vibrators, and detect the change of stimulation positions with small time delay. Furthermore, the addition of vibrotactile feedback improves the performance of controlling a virtual ankle to reach target positions. These preliminary results validate the promise of applying the vibrotactile stimulation system for robotic transtibial prosthesis control.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116712074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Friction and damping of a compliant foot based on granular jamming for legged robots 基于颗粒干扰的柔性足部的摩擦和阻尼
Simon Hauser, P. Eckert, Alexandre Tuleu, A. Ijspeert
{"title":"Friction and damping of a compliant foot based on granular jamming for legged robots","authors":"Simon Hauser, P. Eckert, Alexandre Tuleu, A. Ijspeert","doi":"10.1109/BIOROB.2016.7523788","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523788","url":null,"abstract":"Moving away from simple foot designs of current quadruped robots towards a more bio-inspired approach, a novel foot design was implemented on the quadruped robot Oncilla. These feet mimic soft paw-pads of dogs and cats with high traction and soft underlying tissue. Consisting of a granular medium enclosed in a flexible membrane, they can be set to different pressure/vacuum conditions. Tests of general properties such as friction force, damping and deformation were completed by proof of concept tests on the robot. These included flat ground locomotion as well as ascending a slope with different inclination. Comparison tests with the previous feet were performed as well, showing that the new feet have a high friction and strong damping properties. Additionally, the speed of flat ground locomotion is comparable to the maximum speed of the robot with the previous feet while retaining the desired trotting gait. These are promising aspects for legged locomotion. The jamming of granular media previously has been used to create a universal gripper which in the future also opens up opportunities to use the feet both in locomotion and simple object manipulation (although the manipulation is not tested here).","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124484326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Performance-based viscous force field adaptation in upper limb strength training for stroke patients 基于性能的粘性力场适应在脑卒中患者上肢力量训练中的应用
K. Baur, Verena Klamroth-Marganska, C. Giorgetti, Daniela Fichmann, R. Riener
{"title":"Performance-based viscous force field adaptation in upper limb strength training for stroke patients","authors":"K. Baur, Verena Klamroth-Marganska, C. Giorgetti, Daniela Fichmann, R. Riener","doi":"10.1109/BIOROB.2016.7523736","DOIUrl":"https://doi.org/10.1109/BIOROB.2016.7523736","url":null,"abstract":"Muscle weakness is one of the major deficits after stroke but specific strength training is seldom included in robot-assisted rehabilitation. At the same time, the emergence of robotic devices for stroke therapy offers technical possibilities for strength training. We propose a control strategy for strength training that is based on a viscous force field shaped towards the patient's performance abilities at different positions and directions during a movement. The controller was implemented in the arm rehabilitation robot ARMin in combination with a one-degree-of-freedom repetitive tracking task. The viscous force field is adapted in each round as a function of the local performance profile (shape) and the performance sum of each round (task level). The patient gets feedback by visual representation of the tracking task displaying the position of the moving target object and the position of the patient cursor. We hypothesize that the performance-shaped task level of the viscous force field demands the maximum effort of the participant at each point of the trajectory. Furthermore, we hypothesize that the participants are more motivated by this controller for strength training than by controllers using a constant task level. The controller was tested in a feasibility study with 31 healthy subjects. The resulting individual task level of the viscous force field increased compared to the initial state but did not reach a steady state by (visual inspection). No differences in motivation compared to a controller using a constant viscous force field were identified. We propose the framework of differentiation in shape and task level of a viscous force field for difficulty adaptation in future rehabilitation games.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124815833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信