Localized Extreme Learning Machine for online inverse dynamic model estimation in soft wearable exoskeleton

B. Dinh, L. Cappello, L. Masia
{"title":"Localized Extreme Learning Machine for online inverse dynamic model estimation in soft wearable exoskeleton","authors":"B. Dinh, L. Cappello, L. Masia","doi":"10.1109/BIOROB.2016.7523688","DOIUrl":null,"url":null,"abstract":"In recent years, actuation technology have been increasingly developed new fields and utilized widely in applications differing from automation and industry , but also robotic rehabilitation, haptics and wearable exoskeleton devices where safety, limitation of peak forces and gentle interaction are extremely important. To date, several examples of robotic applications have been designed to address the demanding needs of these disciplines that require the compliance in actuation and manipulation. However, the control performance is still limited due to lack of accuracy in robotic dynamics model and unmodeled nonlinearities such as friction. In such cases, estimating inverse dynamic model from collected data will provide an interesting alternative solution in order to achieve the compliance interaction and the good performance in position tracking. In this paper, an algorithm for online robotic inverse dynamics learning is proposed and explained using localization approach combined with Extreme Learning Machine.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In recent years, actuation technology have been increasingly developed new fields and utilized widely in applications differing from automation and industry , but also robotic rehabilitation, haptics and wearable exoskeleton devices where safety, limitation of peak forces and gentle interaction are extremely important. To date, several examples of robotic applications have been designed to address the demanding needs of these disciplines that require the compliance in actuation and manipulation. However, the control performance is still limited due to lack of accuracy in robotic dynamics model and unmodeled nonlinearities such as friction. In such cases, estimating inverse dynamic model from collected data will provide an interesting alternative solution in order to achieve the compliance interaction and the good performance in position tracking. In this paper, an algorithm for online robotic inverse dynamics learning is proposed and explained using localization approach combined with Extreme Learning Machine.
柔性可穿戴外骨骼动态模型在线逆估计的局部极限学习机
近年来,驱动技术在自动化、工业、机器人康复、触觉和可穿戴外骨骼设备等领域得到了越来越多的发展和广泛的应用,这些领域对安全性、峰值力的限制和温和的相互作用都非常重要。到目前为止,已经设计了几个机器人应用的例子,以满足这些学科的苛刻需求,这些学科需要在驱动和操纵方面的遵从性。然而,由于机器人动力学模型的精度不足以及摩擦等非线性因素的未建模,控制性能仍然受到限制。在这种情况下,从收集的数据中估计逆动态模型将为实现顺从交互和良好的位置跟踪性能提供一种有趣的替代解决方案。本文提出了一种机器人在线逆动力学学习算法,并结合极限学习机的定位方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信