Volume 1: Offshore Technology最新文献

筛选
英文 中文
Physical Modeling and Simplification of FPSO Topsides Module in Wind Tunnel Model Tests 风洞模型试验中FPSO上层平台模块的物理建模与简化
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-63459
Z. Huang, Hyun Joe Kim
{"title":"Physical Modeling and Simplification of FPSO Topsides Module in Wind Tunnel Model Tests","authors":"Z. Huang, Hyun Joe Kim","doi":"10.1115/omae2021-63459","DOIUrl":"https://doi.org/10.1115/omae2021-63459","url":null,"abstract":"\u0000 To evaluate wind load on offshore structures, such as FPSO’s, wind tunnel model test is a common industry practice. Configuration of topsides structures and equipment can be very complex, and it is a practical challenge to model all the structural details for wind tunnel model tests. Sometimes, there may be significant modifications to the topsides over FPSO operation life cycle and there may not be detailed topsides drawing for wind tunnel to use in physical model construction. In practice, wind tunnel laboratories have to simplify physical topsides models. They also use metal meshes to cover the topsides modules to compensate for the force reduction due to the simplification. In order to help establish physical modeling practices of wind tunnel model test, we performed extensive tests using a single topsides module. The original topsides module without simplification and mesh was tested first. Then, two simplifications were adopted in the physical model construction. The module was covered with and without metal mesh of different porosities. Thorough test quality assurance (QA) and quality control (QC) were performed to ensure data quality. Test setup, quality assurance (QA) and results are presented in the paper. The results can be used not only for appropriate physical modeling practices of complex topsides modules, but also for validation of numerical predictions such as Computational Fluid Dynamics (CFD), as well as empirical formulas.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"128 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76226742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Fracture Mechanics to Structural Fatigue Assessment Based on Spectral Method 断裂力学在基于谱法的结构疲劳评估中的应用
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-63608
Sagar Samaria, J. Kyoung, J. O’Donnell, Bob Zhang
{"title":"Application of Fracture Mechanics to Structural Fatigue Assessment Based on Spectral Method","authors":"Sagar Samaria, J. Kyoung, J. O’Donnell, Bob Zhang","doi":"10.1115/omae2021-63608","DOIUrl":"https://doi.org/10.1115/omae2021-63608","url":null,"abstract":"\u0000 The spectral fatigue methodology is a widely accepted methodology to compute the fatigue life of an offshore platform. The ever-increasing demand for life extension of the existing floating platforms worldwide continues to grow. ABS Guide for Fatigue Assessment of Offshore Structures and DNVGL-RP-C203 have established guidelines for employing finite element analysis (FEA) to calculate fatigue lives using the spectral fatigue method.\u0000 For complex structural details, the FE models with 2-D elements may not be able to capture the actual geometric details accurately. Hence, detailed FE models with solid (3-D) elements are utilized to capture geometric SCF’s (stress concentration factors) for these locations. The fatigue lives thus obtained using SCF approach with 2-D elements can be highly conservative or inaccurate. To overcome unreliable fatigue results for such complex locations that need using 3-D elements for a better definition of the local structure, this paper presents an extension to the defined guidelines by employing spectral fatigue methodology to 3-D solid elements. The paper also illustrates the applicability of Engineering Criticality Assessment (ECA) using stress-histogram based Fracture Mechanics Evaluation (FME) approach.\u0000 A comparative study is performed for a critical weld location on an offshore platform using solid 3-D and shell 2-D FE models. First, FEA is performed for both the models to calculate fatigue lives using the S-N curve-based approach. In addition, FME is also performed for the same critical weld location in order to provide a more accurate and reliable solution that will enable clients to plan their in-service inspections and maintenance programs. Also, presented is a comparison of fatigue lives based on the solid and shell element FME.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86056927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Underdeck Wave Slamming Model Tests for a Drilling Semi-Submersible Unit 钻井半潜式装置甲板下冲击波模型试验
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-61270
Li-xin Xu, X. Teng, Jinguang Wang, Sing-Kwan Lee, Jiancheng Liu, Yi-zhi Guo, Longfei Xiao
{"title":"Underdeck Wave Slamming Model Tests for a Drilling Semi-Submersible Unit","authors":"Li-xin Xu, X. Teng, Jinguang Wang, Sing-Kwan Lee, Jiancheng Liu, Yi-zhi Guo, Longfei Xiao","doi":"10.1115/omae2021-61270","DOIUrl":"https://doi.org/10.1115/omae2021-61270","url":null,"abstract":"\u0000 Negative air gap and wave slamming load on the deck box of drilling semi-submersible units in severe storm have received a great deal of attention, due to the COSL Innovator accident in 2015. Equally important is vertical slamming load on the MODU underdeck, which is less reported in the literature. The present paper attempts to derive characteristic vertical slamming pressure on the deck bottom, based on an extensive model test program for a drilling semi-submersible unit, CM-SD1000.\u0000 A total of 96 3-hour wave impact tests were conducted including 4 sea states selected along the DNV steepness criterion curve in 3 wave headings. Two critical sea states were identified and each was tested with 16 random realizations in both the head and the beam waves. 8 force panels were installed on the under-deck to capture vertical wave impact events. It is found that the peak slamming pressures obtained can be fitted well with both Weibull and Gumbel probability function. The extreme vertical impact pressure predicted are of the same order of magnitude as the extreme horizontal impact pressure.\u0000 The present study also shows that rise velocities of the wave surface relative to the deck bottom have a remarkable correlation with the wave slamming pressure in terms of probability distribution. The relative rise velocities can be properly derived from wave probe measurements. This offers an alternative approach to estimate the vertical impact pressure without resort to force panels.\u0000 In contrast to horizontal wave slamming, the magnitude and frequency of vertical ones simply increases with significant wave height and wave steepness has much less effect. It is found that the extreme vertical impact pressure can be approximated well by a linear function of the significant wave height. The linear relationship, if validated by more tests, may help evaluate structural strength of the deck bottom before wave basin model testing.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91157117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Criticality Assessments of Floating Offshore Platforms Based on Time Domain Structural Response Analysis 基于时域结构响应分析的海上浮式平台工程临界性评估
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-63796
J. O’Donnell, J. Kyoung, Sagar Samaria, A. Sablok
{"title":"Engineering Criticality Assessments of Floating Offshore Platforms Based on Time Domain Structural Response Analysis","authors":"J. O’Donnell, J. Kyoung, Sagar Samaria, A. Sablok","doi":"10.1115/omae2021-63796","DOIUrl":"https://doi.org/10.1115/omae2021-63796","url":null,"abstract":"\u0000 This paper presents a time-domain S-N fatigue analysis and an approach to reliable and robust engineering criticality assessments to supplement or provide an alternative to S-N fatigue assessments of offshore platform structures based on time domain structural response analysis. It also provides recommendations for industry standards to improve guidance for structural integrity assessments of offshore platforms using fracture mechanics.\u0000 Demand continues to grow in the offshore industry to attain value from captured operational data for a number of purposes, including the reduction of uncertainties in structural integrity assessments during design and over the operational lifetime of floating offshore platforms. Recent advances in time domain structural analysis technology demonstrate substantially more accurate assessments of non-linear platform loadings and responses with enhanced computational efficiency. The current S-N approach for fatigue design and integrity assessments calculates a fatigue damage factor that does not address how loading occurs over time (ABS, DNVGL-RP-C203).\u0000 For the present study, engineering criticality assessments (ECAs) based on fracture mechanics theory (BS 7910) are applied utilizing time-domain loading information theory. The ECA returns the smallest initial flaws that can grow to a critical size during a design lifetime, which can serve as an indicator of acceptability during design, a technical basis for in-service inspection intervals and facilitates asset integrity and life extension assessments. Critical initial flaws are calculated using the Paris Law (BS 7910) and cumulative fatigue crack growth in two ways: with and without an integrated and consistent check for fracture instability. The results are compared with those from S-N fatigue analyses and recommendations are provided.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"231 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89238462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Verification of a Deepwater FPSO Using Truncated Model Tests and Numerical Simulations 利用截断模型试验和数值模拟对深水FPSO进行混合验证
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-62670
Xiangbo Liu, C. T. Liong, Nitesh Kumar, Kie Hian Chua, A. Magee, Y. Choo
{"title":"Hybrid Verification of a Deepwater FPSO Using Truncated Model Tests and Numerical Simulations","authors":"Xiangbo Liu, C. T. Liong, Nitesh Kumar, Kie Hian Chua, A. Magee, Y. Choo","doi":"10.1115/omae2021-62670","DOIUrl":"https://doi.org/10.1115/omae2021-62670","url":null,"abstract":"\u0000 This paper presents verification of a deep water FPSO with a semi-taut mooring system using model tests and numerical modelling commonly referred to as the hybrid method. The vessel under investigation is a FPSO of 310m in length and 47m in beam with an internal turret mooring system of 12 lines in 2000m water depth. Two configurations of the mooring systems i.e. inline and bisecting are investigated for sea-states up to 1000yr return period. A full depth mooring system has been developed for the FPSO and model tests will be carried out to verify the model. Due to limitations to the size of the model basins, the model tests will be carried out for a truncated mooring setup. Non-linear horizontal stiffness of a single mooring line and the complete mooring system with truncation is compared to that of the existing full depth mooring system. Discrepancies in the vertical forces due to truncation of line length will be discussed in the paper. A numerical model of the truncated set-up will be calibrated using model test results.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90631060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Validation of Mooring Simulations (for Mooring Integrity Assessment) With In-Service Tension Measurements 使用张力测量的系泊模拟(用于系泊完整性评估)的验证
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-62772
W. Pauw, R. Hageman, Joris van den Berg, P. Aalberts, Hironori Yamaji, A. Ong
{"title":"Validation of Mooring Simulations (for Mooring Integrity Assessment) With In-Service Tension Measurements","authors":"W. Pauw, R. Hageman, Joris van den Berg, P. Aalberts, Hironori Yamaji, A. Ong","doi":"10.1115/omae2021-62772","DOIUrl":"https://doi.org/10.1115/omae2021-62772","url":null,"abstract":"\u0000 Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1].\u0000 Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented.\u0000 The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response.\u0000 Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions.\u0000 In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined.\u0000 This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"340 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78609850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling of Sustainable Atmospheric Boundary Layer for Offshore Floaters 近海漂浮物可持续大气边界层数值模拟
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-63807
Jang-Whan Kim, Hyunchul Jang, S. Yeon, Hyunjoe Kim
{"title":"Numerical Modeling of Sustainable Atmospheric Boundary Layer for Offshore Floaters","authors":"Jang-Whan Kim, Hyunchul Jang, S. Yeon, Hyunjoe Kim","doi":"10.1115/omae2021-63807","DOIUrl":"https://doi.org/10.1115/omae2021-63807","url":null,"abstract":"\u0000 Wind load is one of the major design load considerations for the hull and mooring of offshore floating facilities. The first step to minimize the uncertainties in wind load is generating an accurate wind profile that satisfies design requirements.\u0000 Recently, there was a joint-industry effort to develop CFD modeling practices on wind-load estimation in SNAME OC-8 CFD Task Force (OMAE2018-78699). The Task Force developed the modeling practice for the NPD (Norwegian Petroleum Directorate) model commonly used for offshore platform design, and several independent participants in the Task Force successfully validated the practice for a topsides of a semi-submersible platform. The sustainable wind profile was able to be generated within 1% tolerance of the target wind profile, and the calculated wind loads on the topsides from CFD simulations were close to the model test data with low uncertainty levels.\u0000 In the present study, the numerical modeling for the sustainable ABL is extended to other popular wind models such as the ESDU (Engineering Science Data Unit) and the power-law models. The study is a part of a joint-development project between TechnipFMC, Chevron, and Samsung Heavy Industries. The analytic or numerical formulae of wind speed and turbulent quantities for several RANS (Reynolds-Averaged Navier-Stokes) models are derived for the wind models, and the sustainability of wind profiles are verified.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73742918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Northern Light Offshore Pipeline – Negative Transport Temperature Inside the HDD 北极光海上管道-负运输温度在硬盘内
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-63713
Giuseppe Blasioli, F. Marchesani, Maurizio Badalini, Vincenzo Luci, Tove Bekkeheien, Arne Ingvar Helland
{"title":"Northern Light Offshore Pipeline – Negative Transport Temperature Inside the HDD","authors":"Giuseppe Blasioli, F. Marchesani, Maurizio Badalini, Vincenzo Luci, Tove Bekkeheien, Arne Ingvar Helland","doi":"10.1115/omae2021-63713","DOIUrl":"https://doi.org/10.1115/omae2021-63713","url":null,"abstract":"\u0000 The transport of CO2 through offshore pipelines is one of the last business that the Operators are beginning to face, in line with the coming needs for climate change mitigations.\u0000 The scenario for CO2 Capture, Transport and Storage anticipates capture and treatment at local plants, the transportation by ships in a liquid phase at low temperatures (close to −30 °C) to a terminal for the following offshore submarine transportation in a pipeline up to an injection well, for the final (and permanent) storage underground.\u0000 In order to optimize the operating costs for CO2 transport via pipeline, and to reduce energy consumptions, no heating is applied from ship to pipeline inlet. In such case, the pipeline will reach approximately a temperature of −30 °C in the initial landfall section.\u0000 The design of the offshore pipeline subject to this operating conditions, very cold fluid inside and a sea water temperature slightly over 0°C outside (North Sea), must face the possibility of ice formation around the pipe.\u0000 For the Northern Lights project, this possibility has been analyzed and the HDD (Horizontal Directional Drilling) at landfall resulted the only section where the ice formation could jeopardize the pipeline integrity. Detailed assessment for both normal operating conditions and contingency cases has been performed.\u0000 In the former case, a steady state thermal analysis with analytical method (thermal resistances) has been applied to calculate both the longitudinal, along the pipeline axis, and radial temperature profile: all the water inside the HDD freezes. Therefore, a water circulation system has been studied to prevent the ice formation. The pumping system required to ensure enough water flow has been dimensioned considering pressure losses inside the HDD. Power consumption in the order of 3 kW is expected.\u0000 The breakdown of the pumps has been analyzed in order to determine the available time before the sea water freeze inside the HDD obstructing any circulation. A transient analysis has been carried out simulating the temperature after water circulation arrest. Both analytical and Finite Element Model have been used to calculate the transient process causing water freezing.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"306 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79840552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the Hydrodynamic Performance of Zero Speed Fin Stabilizer 零航速减摇鳍的水动力性能研究
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-62889
Yuefeng Wei, Yi Yang
{"title":"Research on the Hydrodynamic Performance of Zero Speed Fin Stabilizer","authors":"Yuefeng Wei, Yi Yang","doi":"10.1115/omae2021-62889","DOIUrl":"https://doi.org/10.1115/omae2021-62889","url":null,"abstract":"\u0000 Nowadays, zero speed fin stabilizer has been initially applied in ship. Whether zero speed fin stabilizer can generate enough lift moment to resist rolling moment or not, determines the anti-rolling effect of ship at zero speed. In the present paper, numerical model is proposed to calculate the lift force and moment of zero speed fin stabilizer. The results of numerical calculation are verified by model test results and the hydrodynamic performance of zero speed fin stabilizer are studied. The numerical results are in good agreement with the model test results. For different swing angular velocity of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer reach the maximum at the same swing angle. For the same swing angle of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer are proportional to the square of angular velocity.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88267091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Intelligent Control Strategy in Dynamic Positioning (DP) System Applied to a Semi-Submersible Drilling Platform in the North Sea 动态定位(DP)系统先进智能控制策略在北海某半潜式钻井平台上的应用
Volume 1: Offshore Technology Pub Date : 2021-06-21 DOI: 10.1115/omae2021-61525
Mohamad Alremeihi, R. Norman, K. Pazouki, A. Dev, M. Bashir
{"title":"Advanced Intelligent Control Strategy in Dynamic Positioning (DP) System Applied to a Semi-Submersible Drilling Platform in the North Sea","authors":"Mohamad Alremeihi, R. Norman, K. Pazouki, A. Dev, M. Bashir","doi":"10.1115/omae2021-61525","DOIUrl":"https://doi.org/10.1115/omae2021-61525","url":null,"abstract":"\u0000 Dynamic Positioning (DP) systems play a crucial role in oil and gas drilling and production floaters used globally for deep-water operations. Drilling operations need to maintain automatic positioning of the platform in the horizontal-plane within the safe zone. Operating DP systems typically require highly responsive control systems when encountering prevailing weather conditions. However, DP incident analysis demonstrates that control and thruster failures have been the leading causes of accidents for the past two decades, according to the International Marine Contractors Association (IMCA). In this paper, a Predictive Neural Network (PNN) strategy is proposed for thruster allocation on a platform; it has been developed by predicting the platform response and training the network to transform the required force commands from a nonlinear Proportional Integral Derivative (PID) motion controller for each thruster. The strategy is developed for increasing safety and zone keeping of DP-assisted-drilling operations in harsh weather. This is done by allowing the platform to recover the position more rapidly whilst decreasing the risk of losing the platform position and heading, which can lead to catastrophic damage. The operational performance of the DP system on a drilling platform subjected to the North Sea real environmental conditions of wind, currents and waves, is simulated with the model incorporating the PNN control algorithm, which deals with dynamic uncertainties, into the unstable conventional PID control system for a current drilling semi-submersible model. The simulation results demonstrate the improvement in DP accuracy and robustness for the semi-submersible drilling platform positioning and performance using the PNN strategy.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"778 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82893457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信