{"title":"A vibration model of a flexible multiple shaft gear system with the tip relief modification","authors":"Yajun Xu, Xinbin Li, Jing Liu, R. Pang","doi":"10.1139/tcsme-2023-0180","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0180","url":null,"abstract":"The fixed-shaft gear system (FSGS) is one critical part in gear transmission systems (GTSs), whose vibrations can significantly influence performances of GTSs. To reduce the vibrations of rigid FSGS caused by installation and manufacture errors, the tooth profile modifications without the shaft deformation were widely introduced. This paper establishes a flexible multiple shaft gear system (FMSGS) model of an unmanned underwater vehicle, which can obtain vibrations of rotor at different axial positions. However, the previous rigid FSGS model cannot obtain those vibrations. In the FMSGS model, the Timoshenko beam elements are applied to the establishment of shaft segments considering flexibility. The meshing stiffness for helical gears with different ranges of tooth profile modification are quantitatively expressed by a gear slicing method. Based on the kinetic relationship between the gear pairs, shaft segment, and bearings, the dynamic equations of FMSGS are derived. By comparing the time-domain waveforms and spectra of FMSGS, the effects of the tooth profile modification amounts and lengths on the vibrations of FMSGS are revealed. The proposed FMSGS model is validated by an experiment. This study extends the dynamic methods of FSGSs, and some suggestions on the vibration control of FSGSs are given.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhan Wang, Jintao Zhu, Jinbao Zhao, Zhang Ke, Zinan Wang
{"title":"Research on the thermal characteristics of motorized spindle under magnetic–thermal coupling based on digital twin","authors":"Zhan Wang, Jintao Zhu, Jinbao Zhao, Zhang Ke, Zinan Wang","doi":"10.1139/tcsme-2024-0022","DOIUrl":"https://doi.org/10.1139/tcsme-2024-0022","url":null,"abstract":"In operation, traditional mechanistic models fail to iteratively update with the motorized spindle, leading to inaccuracies in dynamic data like the motorized spindle's internal magnetic and thermal fields. To address the issue, we propose a data-driven, magnetic–thermal bidirectional coupling twin model based on digital twin technology. This model, considering temperature effects on the motorized spindle motor's materials, enables dynamic updates through a twin database and service platform. Comparative analysis shows minor temperature calculation differences between this twin model and traditional mechanistic models at speeds below 9000 r/min. As the speed reaches 9000 r/min and the motorized spindle's efficiency peaks, the disparity between the two models grows. Experimental data show that the twin model outperforms the traditional model in temperature accuracy at the motorized spindle's test points, achieving up to a 4.57% improvement in front bearing temperature calculations. The proposed motorized spindle twin model demonstrates higher accuracy, providing significant assistance in the dynamic process simulation and operational monitoring of the motorized spindle.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140974305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Online identification and feed-forward compensation of nonlinear friction in servo system based on RBF neural network model","authors":"Yuheng Zhu, Xuewei Li, Lingyi Kong, Taihao Zhang, Guangming Zheng","doi":"10.1139/tcsme-2023-0168","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0168","url":null,"abstract":"In this paper, an online identification and compensation method of nonlinear friction based on radial basis function (RBF) neural network model is proposed for the influence of nonlinear friction on machining accuracy in the low speed process of servo feed system of CNC machine tools. First, a three-layer single-input-output RBF neural network model is established for describing the nonlinear friction of servo feeding system. Second, the neural network online learning algorithm is improved based on adaptive gain, which improves the stability and accuracy of the algorithm. Finally, experiments were carried out on a three-axis milling machine to compensate the friction in the servo feed system in real time based on the online identification results. The results show that the method can effectively improve the online identification accuracy and convergence rate, and effectively improved the low-speed performance of the servo feed system.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiyong Zhao, Shuo Cai, Kelu Liu, Yuping He, Baohua Wang
{"title":"Current control for a supercapacitor-based battery equalization system","authors":"Huiyong Zhao, Shuo Cai, Kelu Liu, Yuping He, Baohua Wang","doi":"10.1139/tcsme-2023-0129","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0129","url":null,"abstract":"This paper presents a novel supercapacitor-based energy equalization system and discusses a new equalization current control method. The proposed battery equalization system is composed of a bidirectional boost–buck circuit, a switch matrix, and a supercapacitor, which can realize stable electric current transmission between batteries and supercapacitors. The buck or boost mode of the circuit is triggered automatically based on the threshold of the voltage drop between the battery and the supercapacitor. A modified control logic of the metal-oxide-semiconductor field-effect transistor is proposed to improve the efficiency of the circuit, and a model predictive control (MPC) algorithm is designed to track the target current. Simulation results indicate that for a conventional electric current transmitting circuit, the current fluctuates violently under a fixed pulse width modulation duty. In contrast, the proposed supercapacitor-based energy equalization system tracks the target current well under the control of the MPC controller. In a wide operating range, the transmission efficiency of the new energy equalization system with the modified control logic is 13.0% higher than that of the conventional electric current transmitting circuit with the original control logic.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141009755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haniyeh Fathi, Alfonse Ly, Tej Pathak, Zeinab El-Sayegh
{"title":"Sensitivity analysis of truck tire tread material properties for on-road applications","authors":"Haniyeh Fathi, Alfonse Ly, Tej Pathak, Zeinab El-Sayegh","doi":"10.1139/tcsme-2023-0165","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0165","url":null,"abstract":"This research delves into the sensitivity analysis of a truck tire rubber compound concerning its impact on tire–road interaction characteristics. Initially, the study employs finite element analysis to model a 315/80R22.5 truck tire, which is subsequently validated through static and dynamic response assessments via various simulation tests. Following validation, the established tire model is utilized to conduct a sensitivity analysis of the tire rubber compound specifically applied on the tread. This analysis encompasses several material definitions, including Mooney–Rivlin, visco-Mooney–Rivlin, linear viscoelastic, and nonlinear viscoelastic materials. By exploring the effects of these material models, the research scrutinizes their influence on tire–road interaction characteristics across diverse operating conditions. The tire–road interaction characteristics include the rolling resistance coefficient, and the cornering force at operating conditions including the longitudinal speed, vertical load, and slip angle. This comprehensive investigation offers insights into the intricate relationship between tire composition and performance, thereby enhancing our understanding of tire behavior and informing potential advancements in tire technology.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shihao Liu, Chenglong Yang, Ganxing Chen, Mao-hua Lin, Jiayi Qin, Mei Li
{"title":"Multi-objective optimization design for the table of a CNC machine tool based on bionic structures","authors":"Shihao Liu, Chenglong Yang, Ganxing Chen, Mao-hua Lin, Jiayi Qin, Mei Li","doi":"10.1139/tcsme-2023-0214","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0214","url":null,"abstract":"In order to improve the static and dynamic performance of CNC machine tool tables, a multi-objective optimization design method based on bionic structures is proposed, which involves. Based on the bionics, four types of bionic structure tables for the original XK5032 machine tool were designed, namely bamboo cross-section bionic structure table, spider web bionic structure table, honeycomb bionic structure table, and prairie rushes bionic structure table. Static and modal analysis of the original and four types of bionic tables were conducted using finite element simulation methods validated through modal experiments. The results show that the overall mechanics of the four bionic tables have been improved compared to the original table. Using the entropy weight TOPSIS method, the prairie rushes bionic structure table was selected from four types of bionic tables. Conducting multi-objective optimization design on the prairie rushes bionic structure table, three optimization candidate schemes were obtained. The entropy-weighted TOPSIS method was used again to select the optimal solution from these three schemes, resulting in a 0.8% reduction in mass, an increase in first-order natural frequency by 2.8%, a decrease in maximum displacement by 3.2%, and a significant 21.6% reduction in maximum equivalent stress compared to the original table.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140697595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical grouting sleeve of rebars: experimental investigations","authors":"Zengqiang Zhang, Jie Li, Shuhe Dai, Jingbo Guo","doi":"10.1139/tcsme-2023-0014","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0014","url":null,"abstract":"To ensure the reliability of prefabricated concrete structures and reduce the cost of sleeve, a new type of mechanical grouting sleeve of rebars was designed. According to the specification of the rebar joint, monotonic axial tension test and cyclic load test of the new rebar sleeve were performed. The working mechanism and connection performance of sleeve were studied. The results show that the unidirectional tensile strength of the sleeve joint can meet the requirement of 1.1 times of the tensile strength of the rebar. The deformation of mechanical grouting meets the requirements of standard under cyclic load. The strength and deformation properties of the rebar joint meet the requirements of standard of JGJ107-2010 for I level joint when the grouting length is large. The working mechanism of the mechanical grouting sleeve is discussed, which provides a new design method for the connection of rebar with different diameters. The research results are of great significance for promoting the development of prefabricated concrete structures.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140698459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational simulation of impact perforation of polymeric-foam core sandwiched composites with different skin–face configurations","authors":"I. Elnasri, Ahmed Almagableh, A. Gherissi","doi":"10.1139/tcsme-2023-0184","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0184","url":null,"abstract":"The normal and oblique impact perforation responses of composite sandwich panels based on a Rohacell polymeric foam core are numerically investigated at high impact energies (> 60 J). A cylindrical form factor with a diameter of 140 mm and a thickness of 15 mm is selected for the sandwich specimens. Four different stacking sequences of 1 mm carbon/epoxy face sheets are considered (i.e., quasi-isotropic, cross-ply, angle-ply, and unidirectional stacking). A computational model was constructed using LS-DYNA finite element software and an inverse perforation testing scheme adapted with a Split Hopkinson bar and confirmed by comparing these results with those obtained using the free shooting projectile-target testing schemes published in the literature. The effects of impact energy, failure modes, impact angles and damage key parameters are analyzed. The results reveal the contact force vs displacement curves are highly influenced by the impact energy increases. The stacking sequence of the face sheets does not influence the energy absorption capacity. Whereas the maximum absorbed energy increases with an increasing impact angle up to 20°. Using Hopkinson bars in conjunction with the virtual inverse perforation testing approach is effective for examining the response of sandwich composites at high impact energies.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140697044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and dynamic characteristics of automatic vertical drilling tool","authors":"Jialin Tian, Bo He, Lin Guo","doi":"10.1139/tcsme-2023-0041","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0041","url":null,"abstract":"Higher performance is needed in deeper and longer horizontal wellbore drilling. In vertical drilling conditions, wellbore trajectory often be led to deviation due to objective conditions. Based on the engineering issues, this paper presents a new automatic vertical drilling tool, including the innovative design and working mechanism research. This tool working mechanism are carried out, such as the mechanics model of eccentric tube and the relationships between eccentric torque and deflection angle. The eccentric tube torque increases with the wellbore deviation angle. When wellbore deviation angle is constant, the eccentric tube torque reaches maximum value when its deflection angle is 90°. The internal flow parameters are studied by fluid field simulation, such as drilling fluid flow rate, pressure drop, and pressure distribution inside this tool during downhole drilling process. The larger the diameter of switch hole, the higher is the pressure drop around, which leads to the force on push block increasing. The drilling fluid pressure increases with higher input flow rate inside this tool. The comparison of results, the data of simulation and theoretical model calculations, verified the reliability and accuracy of research. This study has provided innovative ideas and reference for drilling tool design and wellbore trajectory control methods.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140716724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhijie Gao, Peng Zhu, Shu Yang, Zuoshan Wei, Qitong Wang, Li Zhou
{"title":"Milling characteristics of SiCp/2024Al composites thin-walled part based on movable auxiliary support","authors":"Zhijie Gao, Peng Zhu, Shu Yang, Zuoshan Wei, Qitong Wang, Li Zhou","doi":"10.1139/tcsme-2023-0148","DOIUrl":"https://doi.org/10.1139/tcsme-2023-0148","url":null,"abstract":"Due to milling force and milling heat, thin-walled parts are highly susceptible to deformation and even scrap. In this paper, a method of milling thin-walled part based on the movable auxiliary support was proposed. The ABAQUS software was employed to simulate the milling of thin-walled SiCp/2024Al composite part, while the movement of the auxiliary support was simulated using the secondary development subroutine VDLOAD. The influences of the magnitude and area of the movable auxiliary support on the surface temperature, deformation, and residual stress of the workpiece were investigated by single factor method. The results showed that, with the increasing of the magnitude and area of the movable auxiliary support, both surface temperature and deformation of the thin-walled part decrease. The tensile residual stress decreases and gradually changes to compressive residual stress. Interestingly, when the magnitude exceeds 20 MPa or the area exceeds 100 mm2, the deformation of the thin-walled part continues to decrease, but the middle of the thin-walled part is concave toward the milling cutter. It is worth noting that the effect of area on the residual stress does not show a clear regularity. Thus, the reasonable auxiliary support can reduce deformation and stability in the milling of thin-walled parts and the results of the study can provide a theoretical basis for optimizing the milling process of thin-walled parts.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140717181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}