{"title":"Improved Technique for Preserving Privacy while Mining Real Time Big Data","authors":"Ila Chandrakar","doi":"10.17762/ijcnis.v14i1.5187","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5187","url":null,"abstract":"With the evolution of Big data, data owners require the assistance of a third party (e.g.,cloud) to store, analyse the data and obtain information at a lower cost. However, maintaining privacy is a challenge in such scenarios. It may reveal sensitive information. The existing research discusses different techniques to implement privacy in original data using anonymization, randomization, and suppression techniques. But those techniques are not scalable, suffers from information loss, does not support real time data and hence not suitable for privacy preserving big data mining. In this research, a novel approach of two level privacy is proposed using pseudonymization and homomorphic encryption in spark framework. Several simulations are carried out on the collected dataset. Through the results obtained, we observed that execution time is reduced by 50%, privacy is enhanced by 10%. This scheme is suitable for both privacy preserving Big Data publishing and mining.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132843369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Security Improvements for Connected Vehicles Position-Based Routing","authors":"Andrey Silva","doi":"10.54039/ijcnis.v13i3.4953","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.4953","url":null,"abstract":"The constant growing on the number of vehicles is increasing the complexity of traffic in urban and highway environments. It is paramount to improve traffic management to guarantee better road usage and people’s safety. Through efficient communications, Vehicular Ad hoc Networks (VANETs) can provide enough information for traffic safety initiatives, daily traffic data processing, and entertainment information. However, VANETs are vulnerable to malicious nodes applying different types of net-work attacks, where an attacker can, for instance, forge its position to receive the data packet and drop the message. This can lead vehicles and authorities to make incorrect assumptions and decisions, which can result in dangerous situations. Therefore, any data dissemination protocol designed for VANET should consider security issues when selecting the next-hop forwarding node. In this paper, we propose a security scheme designed for position-based routing algorithms, which analyzes nodes position, transmission range, and hello packet interval. The scheme deals with malicious nodes performing network attacks, faking their positions forcing packets to be dropped. We used the Simulation of Urban MObility (SUMO) and Network Simulator-version 3 (NS-3) to compare our proposed scheme integrated with two well-known position-based algorithms. The results were collected in an urban Manhattan grid environment varying the number of nodes, the number of malicious nodes, as well as the number of source-destination pairs. The results show that the proposed security scheme can successfully improve the packet delivery ratio while maintaining low average end-to-end delay of the algorithms. ","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125529198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Channel Propagation Characteristics on the Performance of 4G Cellular Systems from High Altitude Platforms (HAPs)","authors":"Kabiru Yusuf, D. S. Shuaibu, S. A. Babale","doi":"10.54039/ijcnis.v13i3.5133","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5133","url":null,"abstract":"In this paper, we investigated the effect of different channel propagation characteristics on the performance of 4G systems from high altitude platforms (HAPs). The use of High-Altitude Platforms for communication purpose in the past focused mostly on the assumption that the platform is quasi stationary. The technical limitation of the assumption was that of ensuring stability in the positioning of the platform in space. The use of antenna steering and other approaches were proposed as a solution to the said problem. In this paper, we proposed a channel model which account for the motion of the platform. This was done by investigating the effect of Doppler shift on the carrier frequency as the signals propagate between the transmitter and receiver while the High-Altitude Platform is in motion. The basic free space model was used and subjected to the frequency variation caused by the continuous random shift due to the motion of the HAPs. The trajectory path greatly affects the system performance. A trajectory of 30km, 100km and 500km radii were simulated. An acute elevation angle was used in the simulation. The proposed model was also compared to two other channel models to illustrate its performance. The results show that the proposed model behave similar to the existing models except at base station ID 35 and 45 where the highest deviation of 20dBm was observed. Other stations that deviated were less than 2dBm.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114320443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Enhanced Block Pre-processing of PRESENT Algorithm for Fingerprint Template Encryption in the Internet of Things Environment","authors":"N. Katuk, Ikenna Rene Chiadighikaobi","doi":"10.54039/ijcnis.v13i3.5101","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5101","url":null,"abstract":"Many previous studies had proven that The PRESENT algorithm is ultra-lightweight encryption. Therefore, it is suitable for use in an IoT environment. However, the main problem with block encryption algorithms like PRESENT is that it causes attackers to break the encryption key. In the context of a fingerprint template, it contains a header and many zero blocks that lead to a pattern and make it easier for attackers to obtain an encryption key. Thus, this research proposed header and zero blocks bypass method during the block pre-processing to overcome this problem. First, the original PRESENT algorithm was enhanced by incorporating the block pre-processing phase. Then, the algorithm’s performance was tested using three measures: time, memory usage, and CPU usage for encrypting and decrypting fingerprint templates. This study demonstrated that the proposed method encrypted and decrypted the fingerprint templates faster with the same CPU usage of the original algorithm but consumed higher memory. Thus, it has the potential to be used in IoT environments for security.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132244758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Features-Aware DDoS Detection in Heterogeneous Smart Environments based on Fog and Cloud Computing","authors":"Wanderson L. Costa, Ariel L. C. Portela, R. Gomes","doi":"10.54039/ijcnis.v13i3.5080","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5080","url":null,"abstract":"Nowadays, urban environments are deploying smart environments (SEs) to evolve infrastructures, resources, and services. SEs are composed of a huge amount of heterogeneous devices, i.e., the SEs have both personal devices (smartphones, notebooks, tablets, etc) and Internet of Things (IoT) devices (sensors, actuators, and others). One of the existing problems of the SEs is the detection of Distributed Denial of Service (DDoS) attacks, due to the vulnerabilities of IoT devices. In this way, it is necessary to deploy solutions that can detect DDoS in SEs, dealing with issues like scalability, adaptability, and heterogeneity (distinct protocols, hardware capacity, and running applications). Within this context, this article presents an Intelligent System for DDoS detection in SEs, applying Machine Learning (ML), Fog, and Cloud computing approaches. Additionally, the article presents a study about the most important traffic features for detecting DDoS in SEs, as well as a traffic segmentation approach to improve the accuracy of the system. The experiments performed, using real network traffic, suggest that the proposed system reaches 99% of accuracy, while reduces the volume of data exchanged and the detection time.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131835533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Coalition Formation Game for Cooperative Spectrum Sensing in Cognitive Radio Network under the Constraint of Overhead","authors":"Utpala Borgohain, S. Borkotokey, S. Deka","doi":"10.54039/ijcnis.v13i3.5077","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5077","url":null,"abstract":"Cooperative spectrum sensing improves the sensing performance of secondary users by exploiting spatial diversity in cognitive radio networks. However, the cooperation of secondary users introduces some overhead also that may degrade the overall performance of cooperative spectrum sensing. The trade-off between cooperation gain and overhead plays a vital role in modeling cooperative spectrum sensing. This paper considers overhead in terms of reporting energy and reporting time. We propose a cooperative spectrum sensing based coalitional game model where the utility of the game is formulated as a function of throughput gain and overhead. To achieve a rational average throughput of secondary users, the overhead incurred is to be optimized. This work emphasizes on optimization of the overhead incurred. In cooperative spectrum sensing, the large number of cooperating users improve the detection performance, on the contrary, it increases overhead too. So, to limit the maximum coalition size we propose a formulation under the constraint of the probability of false alarm. An efficient fusion center selection scheme and an algorithm to select eligible secondary users for reporting are proposed to reduce the reporting overhead. We also outline a distributed cooperative spectrum sensing algorithm using the properties of the coalition formation game and prove that the utility of the proposed game has non-transferable properties. The simulation results show that the proposed schemes reduce the overhead of reporting without compromising the overall detection performance of cooperative spectrum sensing.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125556993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Development of Novel Hybrid Precoder for Millimeter-Wave MIMO System","authors":"K. Srinivas, Srinivasulu Tadisetty","doi":"10.54039/ijcnis.v13i3.5096","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5096","url":null,"abstract":"Power consumption and hardware cost reduction with the use of hybrid beamforming in large-scale millimeter wave MIMO systems. The large dimensional analog precoding integrates with the hybrid beamforming based on the phase shifters including digital precoding with lower dimensionality. The reduction of Euclidean distance between the hybrid precoder and fully digital is the major problem to overcome the minimization of resultant spectral efficiency. The issue formulates as a fully digital precoder’s matrix factorization problem based on the analog RF precoder matrix and the digital baseband precoder matrix. An additional element-wise unit modulus constraint is imposed by the phase shifters on the analog RF precoder matrix. The traditional methods have a problem of performance loss in spectral efficiency. In the processing time and iteration, high complexities result in optimization algorithms. In this paper, a novel low complexity algorithm proposes which maximizes the spectral efficiency and reduces the computational processing time. ","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"203 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123044674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Laptiev, S. Yevseiev, Larysa Hatsenko, O. Daki, Vitaliy Ivanenko, V. Fedunov, S. Hohoniants
{"title":"The method of discretization signals to minimize the fallibility of information recovery","authors":"O. Laptiev, S. Yevseiev, Larysa Hatsenko, O. Daki, Vitaliy Ivanenko, V. Fedunov, S. Hohoniants","doi":"10.54039/ijcnis.v13i3.5070","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5070","url":null,"abstract":"The paper proposes a fundamentally new approach to the formulation of the problem of optimizing the discretization interval (frequency). The well-known traditional methods of restoring an analog signal from its discrete implementations consist of sequentially solving two problems: restoring the output signal from a discrete signal at the output of a digital block and restoring the input signal of an analog block from its output signal. However, this approach leads to methodical fallibility caused by interpolation when solving the first problem and by regularizing the equation when solving the second problem. The aim of the work is to develop a method for the signal discretization to minimize the fallibility of information recovery to determine the optimal discretization frequency.The proposed method for determining the optimal discretization rate makes it possible to exclude both components of the methodological fallibility in recovering information about the input signal. This was achieved due to the fact that to solve the reconstruction problem, instead of the known equation, a relation is used that connects the input signal of the analog block with the output discrete signal of the digital block.The proposed relation is devoid of instabilities inherent in the well-known equation. Therefore, when solving it, neither interpolation nor regularization is required, which means that there are no components of the methodological fallibility caused by the indicated operations. In addition, the proposed ratio provides a joint consideration of the properties of the interference in the output signal of the digital block and the frequency properties of the transforming operator, which allows minimizing the fallibility in restoring the input signal of the analog block and determining the optimal discretization frequency.A widespread contradiction in the field of signal information recovery from its discrete values has been investigated. A decrease in the discretization frequency below the optimal one leads to an increase in the approximation fallibility and the loss of some information about the input signal of the analog-to-digital signal processing device. At the same time, unjustified overestimation of the discretization rate, complicating the technical implementation of the device, is not useful, since not only does it not increase the information about the input signal, but, if necessary, its restoration leads to its decrease due to the increase in the effect of noise in the output signal on the recovery accuracy. input signal. The proposed method for signal discretization based on the minimum information recovery fallibility to determine the optimal discretization rate allows us to solve this contradiction.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123457766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An improved Framework for Biometric Database's privacy","authors":"Ahmed El-Yahyaoui, F. Omary","doi":"10.54039/ijcnis.v13i3.5143","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5143","url":null,"abstract":"Security and privacy are huge challenges in biometric systems. Biometrics are sensitive data that should be protected from any attacker and especially attackers targeting the confidentiality and integrity of biometric data. In this paper an extensive review of different physiological biometric techniques is provided. A comparative analysis of the various sus mentioned biometrics, including characteristics and properties is conducted. Qualitative and quantitative evaluation of the most relevant physiological biometrics is achieved. Furthermore, we propose a new framework for biometric database privacy. Our approach is based on the use of the promising fully homomorphic encryption technology. As a proof of concept, we establish an initial implementation of our security module using JAVA programming language.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127237420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Route lifetime in Vehicular Ad Hoc ?Networks Based on Skellam Distribution Model","authors":"M. A.Tawfeeq","doi":"10.54039/ijcnis.v13i3.5028","DOIUrl":"https://doi.org/10.54039/ijcnis.v13i3.5028","url":null,"abstract":"The emergence of smart cities and the need to use intelligent transportation systems has led to an increased reliance on vehicle ad hoc networks (VANET). The topology of VANET is highly dynamic, which results in a short effective routing time. This paper presents a two-stage algorithm to select a route that can sustain communication between vehicles for as long as possible while taking into account the variables that affect the VANET topology. The first stage uses Skellam distribution model to assess the connectivity probability of paths in a 2d road network based on traffic-flow and the number of vehicles joining and leaving the network, accordingly, the path with the highest connectivity is chosen. In the second stage, the control packets sent only to vehicles on the selected path to detect routes between source and destination, thus reducing the overhead of control packets and increasing network stability. the algorithm adopts the principle of global evaluation to estimate the lifetime of the detected routes within the chosen path. the route with the best estimated lifetime is chosen to be the active route. in the event of route failure, the validity of the next route in lifetime is confirmed to be adopted as the alternate route. The proposed algorithm was compared with both on-demand distance vector routing protocol (AODV) protocol and the modified location-aided routing (LAR) protocol. The proposed algorithm showed greater network stability, higher performance in terms of longer lifetime route detection, less energy consumption and higher throughput.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127657968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}