{"title":"RNF213 p.Arg4810Lys Wild Type is Associated with De Novo Hemorrhage in Asymptomatic Hemispheres with Moyamoya Disease.","authors":"Seiei Torazawa, Satoru Miyawaki, Hideaki Imai, Hiroki Hongo, Daiichiro Ishigami, Masahiro Shimizu, Hideaki Ono, Yuki Shinya, Daisuke Sato, Yu Sakai, Motoyuki Umekawa, Satoshi Kiyofuji, Daisuke Shimada, Satoshi Koizumi, Daisuke Komura, Hiroto Katoh, Shumpei Ishikawa, Hirofumi Nakatomi, Akira Teraoka, Nobuhito Saito","doi":"10.1007/s12975-023-01159-z","DOIUrl":"10.1007/s12975-023-01159-z","url":null,"abstract":"<p><p>Clinical implications of RNF213 genetic variants, other than p.Arg4810Lys, in moyamoya disease (MMD), remain unclear. This study aimed to investigate the association of RNF213 variants with clinical phenotypes in MMD. This retrospective cohort study collected data regarding the clinical characteristics of 139 patients with MMD and evaluated the angioarchitectures of 253 hemispheres using digital subtraction angiography at diagnosis. All RNF213 exons were sequenced, and the associations of clinical characteristics and angiographical findings with p.Arg4810Lys, p.Ala4399Thr, and other rare variants (RVs) were examined. Among 139 patients, 100 (71.9%) had p.Arg4810Lys heterozygote (GA) and 39 (28.1%) had the wild type (GG). Fourteen RVs were identified and detetcted in 15/139 (10.8%) patients, and p.Ala4399Thr was detected in 17/139 (12.2%) patients. Hemispheres with GG and p.Ala4399Thr presented with significantly less ischemic events and more hemorrhagic events at diagnosis (p = 0.001 and p = 0.028, respectively). In asymptomatic hemispheres, those with GG were more susceptible to de novo hemorrhage than those with GA (adjusted hazard ratio [aHR] 5.36) with an increased risk when accompanied by p.Ala4399Thr or RVs (aHR 15.22 and 16.60, respectively). Within the choroidal anastomosis-positive hemispheres, GG exhibited a higher incidence of de novo hemorrhage than GA (p = 0.004). The GG of p. Arg4810Lys was a risk factor for de novo hemorrhage in asymptomatic MMD hemispheres. This risk increased with certain other variants and is observed in choroidal anastomosis-positive hemispheres. A comprehensive evaluation of RNF213 variants and angioarchitectures is essential for predicting the phenotype of asymptomatic hemispheres in MMD.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"729-738"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9560218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain-Targeting Emodin Mitigates Ischemic Stroke via Inhibiting AQP4-Mediated Swelling and Neuroinflammation.","authors":"Yan-Yan Chen, Zhi-Cheng Gong, Mei-Mei Zhang, Zhao-Hui Huang","doi":"10.1007/s12975-023-01170-4","DOIUrl":"10.1007/s12975-023-01170-4","url":null,"abstract":"<p><p>Failure to achieve target-specific delivery to ischemic brain sites has hampered the clinical efficacy of newly developed therapies for ischemic stroke. Emodin, an active ingredient isolated from traditional Chinese medicine, has been indicated to alleviate ischemic stroke; however, the underlying mechanism remains unclear. In this study, we aimed to achieve brain-targeted delivery of emodin to maximize its therapeutic efficacy and elucidate the mechanisms by which emodin alleviates ischemic stroke. A polyethylene glycol (PEG)/cyclic Arg-Gly-Asp (cRGD)-modified liposome was used to encapsulate emodin. TTC, HE, Nissl staining, and immunofluorescence staining were employed to evaluate the therapeutic efficacy of brain-targeting emodin in MCAO and OGD/R models. Inflammatory cytokine levels were determined using ELISA. Immunoprecipitation, immunoblotting, and RT-qPCR were utilized for clarifying the changes in key downstream signaling. Lentivirus-mediated gene restoration was employed to verify the core effector of emodin for relieving ischemic stroke. Encapsulating emodin in a PEG/cRGD-modified liposome enhanced its accumulation in the infarct region and substantially raised its therapeutic efficacy. Furthermore, we demonstrated that AQP4, the most abundant water transporter subunit expressed in astrocytes, plays a crucial role in mediating the mechanisms by which emodin inhibits astrocyte swelling, neuroinflammatory blood-brain barrier (BBB) breakdown in vivo and in vitro, and brain edema in general. Our study unveiled the critical target of emodin responsible for alleviating ischemic stroke and a localizable drug delivery vehicle in the therapeutic strategy for ischemic stroke and other brain injuries.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"818-830"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conelius Ngwa, Abdullah Al Mamun, Shaohua Qi, Romana Sharmeen, Maria P Blasco Conesa, Bhanu P Ganesh, Bharti Manwani, Fudong Liu
{"title":"Central IRF4/5 Signaling Are Critical for Microglial Activation and Impact on Stroke Outcomes.","authors":"Conelius Ngwa, Abdullah Al Mamun, Shaohua Qi, Romana Sharmeen, Maria P Blasco Conesa, Bhanu P Ganesh, Bharti Manwani, Fudong Liu","doi":"10.1007/s12975-023-01172-2","DOIUrl":"10.1007/s12975-023-01172-2","url":null,"abstract":"<p><p>Microglia and monocytes play a critical role in immune responses to cerebral ischemia. Previous studies have demonstrated that interferon regulatory factor 4 (IRF4) and IRF5 direct microglial polarization after stroke and impact outcomes. However, IRF4/5 are expressed by both microglia and monocytes, and it is not clear if it is the microglial (central) or monocytic (peripheral) IRF4-IRF5 regulatory axis that functions in stroke. In this work, young (8-12 weeks) male pep boy (PB), IRF4 or IRF5 flox, and IRF4 or IRF5 conditional knockout (CKO) mice were used to generate 8 types of bone marrow chimeras, to differentiate the role of central (PB-to-IRF CKO) vs. peripheral (IRF CKO-to-PB) phagocytic IRF4-IRF5 axis in stroke. Chimeras generated from PB and flox mice were used as controls. All chimeras were subjected to 60-min middle cerebral artery occlusion (MCAO) model. Three days after the stroke, outcomes and inflammatory responses were analyzed. We found that PB-to-IRF4 CKO chimeras had more robust microglial pro-inflammatory responses than IRF4 CKO-to-PB chimeras, while ameliorated microglial response was seen in PB-to-IRF5 CKO vs. IRF5 CKO-to-PB chimeras. PB-to-IRF4 or IRF5 CKO chimeras had worse or better stroke outcomes respectively than their controls, whereas IRF4 or 5 CKO-to-PB chimeras had similar outcomes compared to controls. We conclude that the central IRF4/5 signaling is responsible for microglial activation and mediates stroke outcomes.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"831-843"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9764426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous Four Supratentorial Lesions Predict Tube Dependency Due to an Impaired Anticipatory Phase of Ingestion.","authors":"Takaaki Hattori, Naoko Mitani, Yoshiyuki Numasawa, Reo Azuma, Satoshi Orimo","doi":"10.1007/s12975-023-01162-4","DOIUrl":"10.1007/s12975-023-01162-4","url":null,"abstract":"<p><p>This study aimed to identify the neuroanatomical predictors of oropharyngeal dysphagia and tube dependency in patients with supratentorial or infratentorial ischemic strokes. Patients with acute ischemic stroke were enrolled and were classified into 3 groups: right supratentorial (n = 61), left supratentorial (n = 89), and infratentorial stroke (n = 50). Dysphagia was evaluated by a modified water swallowing test and the Food Intake LEVEL Scale to evaluate oropharyngeal dysphagia and tube dependency, respectively. As two dysphagia parameters, we evaluated the durations from onset of stroke to (1) success in the modified water swallowing test and to (2) rating 7 points or above on the Food Intake LEVEL Scale: patients regained sufficient oral intake and were not tube-dependent. Voxel-based lesion-symptom mapping analysis was performed for a spatially normalized lesion map of magnetic resonance imaging to explore the anatomies that are associated with the two dysphagia parameters for each stroke group. The right precentral gyrus and parts of the internal capsule are associated with oropharyngeal dysphagia. The four supratentorial areas are associated with tube dependency. The dorsal upper medulla is associated with both oropharyngeal dysphagia and tube dependency. These results suggest that supratentorial stroke patients can be tube-dependent due to an impaired anticipatory phase of ingestion. The simultaneous damage in the four supratentorial areas: the inferior part of the precentral gyrus, lenticular nucleus, caudate head, and anterior insular cortex, predicts tube dependency. In contrast, infratentorial stroke patients can be tube-dependent due to oropharyngeal dysphagia caused by lesions in the dorsal upper medulla, damaging the swallowing-related nucleus.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"761-772"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9542239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingbao Guo, Songtao Pei, Qian-Nan Wang, Jingjie Li, Cong Han, Simeng Liu, Xiaopeng Wang, Dan Yu, Fangbin Hao, Gan Gao, Qian Zhang, Zhengxing Zou, Jie Feng, Rimiao Yang, Minjie Wang, Heguan Fu, Feiyan Du, Xiangyang Bao, Lian Duan
{"title":"Risk Factors for Preoperative Cerebral Infarction in Infants with Moyamoya Disease.","authors":"Qingbao Guo, Songtao Pei, Qian-Nan Wang, Jingjie Li, Cong Han, Simeng Liu, Xiaopeng Wang, Dan Yu, Fangbin Hao, Gan Gao, Qian Zhang, Zhengxing Zou, Jie Feng, Rimiao Yang, Minjie Wang, Heguan Fu, Feiyan Du, Xiangyang Bao, Lian Duan","doi":"10.1007/s12975-023-01167-z","DOIUrl":"10.1007/s12975-023-01167-z","url":null,"abstract":"<p><p>There have been few reports on the risk factors for preoperative cerebral infarction in childhood moyamoya disease (MMD) in infants under 4 years. The aim of this retrospective study is to identify clinical and radiological risk factors for preoperative cerebral infarction in infants under 4 years old with MMD, and the optimal timing for EDAS was also considered. We retrospectively analyzed the risk factors for preoperative cerebral infarction, confirmed by magnetic resonance angiography (MRA), in pediatric patients aged ˂4 years who underwent encephaloduroarteriosynangiosis between April 2005 and July 2022. The clinical and radiological outcomes were determined by two independent reviewers. In addition, potential risk factors for preoperative cerebral infarction, including infarctions at diagnosis and while awaiting surgery, were analyzed using a univariate model and multivariate logistic regression to identify independent predictors of preoperative cerebral infarction. A total of 160 hemispheres from 83 patients aged <4 years with MMD were included in this study. The mean age of all surgical hemispheres at diagnosis was 2.17±0.831 years (range 0.380-3.81 years). In the multivariate logistic regression model, we included all variables with P<0.1 in the univariate analysis. The multivariate logistic regression analysis indicated that preoperative MRA grade (odds ratio [OR], 2.05 [95% confidence interval [CI], 1.3-3.25], P=0. 002), and age at diagnosis (OR, 0.61 [95% CI, 0.4-0.92], P=0. 018) were predictive factors of infarction at diagnosis. The analysis further indicated that the onset of infarction (OR, 0.01 [95% CI, 0-0.08], P<0.001), preoperative MRA grade (OR, 1.7 [95% CI, 1.03-2.8], P=0.037), and duration from diagnosis to surgery (Diag-Op) (OR, 1.25 [95% CI, 1.11-1.41], P<0.001) were predictive factors for infarction while awaiting surgery. Moreover, the regression analysis indicated that family history (OR, 8.88 [95% CI, 0.91-86.83], P=0.06), preoperative MRA grade (OR, 8.72 [95% CI, 3.44-22.07], P<0.001), age at diagnosis (OR, 0.36 [95% CI, 0.14-0.91], P=0.031), and Diag-Op (OR, 1.38 [95% CI, 1.14-1.67], P=0.001) were predictive factors for total infarction. Therefore, during the entire treatment process, careful observation, adequate risk factor management, and optimal operation time are required to prevent preoperative cerebral infarction, particularly in pediatric patients with a family history, higher preoperative MRA grade, duration from diagnosis to operation longer than 3.53 months, and aged ˂3 years at diagnosis.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"795-804"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9681073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał Ząbczyk, Joanna Natorska, Paweł T Matusik, Patrycja Mołek, Wiktoria Wojciechowska, Marek Rajzer, Renata Rajtar-Salwa, Tomasz Tokarek, Aleksandra Lenart-Migdalska, Maria Olszowska, Anetta Undas
{"title":"Neutrophil-activating Peptide 2 as a Novel Modulator of Fibrin Clot Properties in Patients with Atrial Fibrillation.","authors":"Michał Ząbczyk, Joanna Natorska, Paweł T Matusik, Patrycja Mołek, Wiktoria Wojciechowska, Marek Rajzer, Renata Rajtar-Salwa, Tomasz Tokarek, Aleksandra Lenart-Migdalska, Maria Olszowska, Anetta Undas","doi":"10.1007/s12975-023-01165-1","DOIUrl":"10.1007/s12975-023-01165-1","url":null,"abstract":"<p><p>Neutrophil-activating peptide 2 (NAP-2, CXCL7), a platelet-derived neutrophil chemoattractant, is involved in inflammation. We investigated associations between NAP-2 levels, neutrophil extracellular traps (NETs) formation, and fibrin clot properties in atrial fibrillation (AF). We recruited 237 consecutive patients with AF (mean age, 68 ± 11 years; median CHA<sub>2</sub>DS<sub>2</sub>VASc score of 3 [2-4]) and 30 apparently healthy controls. Plasma NAP-2 concentrations were measured, along with plasma fibrin clot permeability (K<sub>s</sub>) and clot lysis time (CLT), thrombin generation, citrullinated histone H3 (citH3), as a marker of NETs formation, and 3-nitrotyrosine reflecting oxidative stress. NAP-2 levels were 89% higher in AF patients than in controls (626 [448-796] vs. 331 [226-430] ng/ml; p < 0.0001). NAP-2 levels were not associated with demographics, CHA<sub>2</sub>DS<sub>2</sub>-VASc score, or the AF manifestation. Patients with NAP-2 in the top quartile (> 796 ng/ml) were characterized by higher neutrophil count (+ 31.7%), fibrinogen (+ 20.8%), citH3 (+ 86%), and 3-nitrotyrosine (+ 111%) levels, along with 20.2% reduced K<sub>s</sub> and 8.4% prolonged CLT as compared to the remaining subjects (all p < 0.05). NAP-2 levels were positively associated with fibrinogen in AF patients (r = 0.41, p = 0.0006) and controls (r = 0.65, p < 0.01), along with citH3 (r = 0.36, p < 0.0001) and 3-nitrotyrosine (r = 0.51, p < 0.0001) in the former group. After adjustment for fibrinogen, higher citH3 (per 1 ng/ml β = -0.046, 95% CI -0.029; -0.064) and NAP-2 (per 100 ng/ml β = -0.21, 95% CI -0.14; -0.28) levels were independently associated with reduced K<sub>s</sub>. Elevated NAP-2, associated with increased oxidative stress, has been identified as a novel modulator of prothrombotic plasma fibrin clot properties in patients with AF.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"773-783"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9991858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Sagues, Andres Gudino, Carlos Dier, Connor Aamot, Edgar A Samaniego
{"title":"Outcomes Measures in Subarachnoid Hemorrhage Research.","authors":"Elena Sagues, Andres Gudino, Carlos Dier, Connor Aamot, Edgar A Samaniego","doi":"10.1007/s12975-024-01284-3","DOIUrl":"https://doi.org/10.1007/s12975-024-01284-3","url":null,"abstract":"<p><p>Despite advancements in acute management, morbidity rates for subarachnoid hemorrhage (SAH) remain high. Therefore, it is imperative to utilize standardized outcome scales in SAH research for evaluating new therapies effectively. This review offers a comprehensive overview of prevalent scales and clinical outcomes used in SAH assessment, accompanied by recommendations for their application and prognostic accuracy. Standardized terminology and diagnostic criteria should be employed when reporting pathophysiological outcomes such as symptomatic vasospasm and delayed cerebral ischemia. Furthermore, integrating clinical severity scales like the World Federation of Neurosurgical Societies scale and modified Fisher score into clinical trials is advised to evaluate their prognostic significance, despite their limited correlation with outcomes. The modified Rankin score is widely used for assessing functional outcomes, while the Glasgow outcome scale-extended version is suitable for broader social and behavioral evaluations. Avoiding score dichotomization is crucial to retain valuable information. Cognitive and behavioral outcomes, though frequently affected in patients with favorable neurological outcomes, are often overlooked during follow-up outpatient visits, despite their significant impact on quality of life. Comprehensive neuropsychological evaluations conducted by trained professionals are recommended for characterizing cognitive function, with the Montreal Cognitive Assessment serving as a viable screening tool. Additionally, integrating psychological inventories like the Beck Depression and Anxiety Inventory, along with quality-of-life scales such as the Stroke-Specific Quality of Life Scale, can effectively assess behavioral and quality of life outcomes in SAH studies.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y N Kalyuzhnaya, A K Logvinov, S G Pashkevich, N V Golubova, E S Seryogina, E V Potapova, V V Dremin, A V Dunaev, S V Demyanenko
{"title":"An Alternative Photothrombotic Model of Transient Ischemic Attack.","authors":"Y N Kalyuzhnaya, A K Logvinov, S G Pashkevich, N V Golubova, E S Seryogina, E V Potapova, V V Dremin, A V Dunaev, S V Demyanenko","doi":"10.1007/s12975-024-01285-2","DOIUrl":"10.1007/s12975-024-01285-2","url":null,"abstract":"<p><p>Animal models mimicking human transient ischemic attack (TIA) and cerebral microinfarcts are essential tools for studying their pathogenetic mechanisms and finding methods of their treatment. Despite its advantages, the model of single arteriole photothrombosis requires complex experimental equipment and highly invasive surgery, which may affect the results of further studies. Hence, to achieve high translational potential, we focused on developing a TIA model based on photothrombosis of arterioles to combine good reproducibility and low invasiveness. For the first time, noninvasive laser speckle contrast imaging (LSCI) was used to monitor blood flow in cerebral arterioles and reperfusion was achieved. We demonstrate that irradiation of mouse cerebral cortical arterioles using a 532-nm laser with a 1-mm-wide beam at 2.4 or 3.7 mW for 55 or 40 s, respectively, after 15 mg/kg intravenous Rose Bengal administration, induces similar ischemia-reperfusion lesions resulting in microinfarct formation. The model can be used to study the pathogenesis of spontaneously developing cerebral microinfarcts in neurodegeneration. Reducing the exposure times by 10 s while maintaining the same other parameters caused photothrombosis of the arteriole with reperfusion in less than 1 h. This mode of photodynamic exposure caused cellular and subcellular level ischemic changes in neurons and promoted the activation of astrocytes and microglia in the first day after irradiation, but not later, without the formation of microinfarcts. This mode of photodynamic exposure most accurately reproduced human TIA, characterized by the absence of microinfarcts.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Animal Models of Intracranial Aneurysms: History, Advances, and Future Perspectives.","authors":"Hiroki Uchikawa, Redi Rahmani","doi":"10.1007/s12975-024-01276-3","DOIUrl":"https://doi.org/10.1007/s12975-024-01276-3","url":null,"abstract":"<p><p>Intracranial aneurysms (IA) are a disease process with potentially devastating outcomes, particularly when rupture occurs leading to subarachnoid hemorrhage. While some candidates exist, there is currently no established pharmacological prevention of growth and rupture. The development of prophylactic treatments is a critical area of research, and preclinical models using animals play a pivotal role. These models, which utilize various species and induction methods, each possess unique characteristics that can be leveraged depending on the specific aim of the study. A comprehensive understanding of these models, including their historical development, is crucial for appreciating the advantages and limitations of aneurysm research in animal models.We summarize the significant roles of animal models in IA research, with a particular focus on rats, mice, and large animals. We discuss the pros and cons of each model, providing insights into their unique characteristics and contributions to our understanding of IA. These models have been instrumental in elucidating the pathophysiology of IA and in the development of potential therapeutic strategies.A deep understanding of these models is essential for advancing research on preventive treatments for IA. By leveraging the unique strengths of each model and acknowledging their limitations, researchers can conduct more effective and targeted studies. This, in turn, can accelerate the development of novel therapeutic strategies, bringing us closer to the goal of establishing an effective prophylactic treatment for IA. This review aims to provide a comprehensive view of the current state of animal models in IA research.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}