Meike Hedwig Keuters, Salli Antila, Riikka Immonen, Lidiia Plotnikova, Sara Wojciechowski, Sarka Lehtonen, Kari Alitalo, Jari Koistinaho, Hiramani Dhungana
{"title":"The Impact of VEGF-C-Induced Dural Lymphatic Vessel Growth on Ischemic Stroke Pathology.","authors":"Meike Hedwig Keuters, Salli Antila, Riikka Immonen, Lidiia Plotnikova, Sara Wojciechowski, Sarka Lehtonen, Kari Alitalo, Jari Koistinaho, Hiramani Dhungana","doi":"10.1007/s12975-024-01262-9","DOIUrl":"10.1007/s12975-024-01262-9","url":null,"abstract":"<p><p>Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice. We injected mice with a single intracerebroventricular dose of adeno-associated viral particles encoding VEGF-C before subjecting them to transient middle cerebral artery occlusion (tMCAo). Behavioral testing, Gadolinium (Gd) contrast agent-enhanced magnetic resonance imaging (MRI), and immunohistochemical analysis were performed to define the impact of VEGF-C on the post-stroke outcome. VEGF-C improved stroke-induced behavioral deficits, such as gait disturbances and neurological deficits, ameliorated post-stroke inflammation, and enhanced an alternative glial immune response. Importantly, VEGF-C treatment increased the drainage of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF), as shown by Gd-enhanced MRI. These outcomes were closely associated with an increase in the growth of dLVs around the region where we observed increased vefgc mRNA expression within the brain, including the olfactory bulb, cortex, and cerebellum. Strikingly, VEGF-C-treated ischemic mice exhibited a faster and stronger Gd-signal accumulation in ischemic core area and an enhanced fluid outflow via the cribriform plate. In conclusion, the VEGF-C-induced dLV growth improved the overall outcome post-stroke, indicating that VEGF-C has potential to be included in the treatment strategies of post-ischemic stroke. However, to maximize the therapeutic potential of VEGF-C treatment, further studies on the impact of an enhanced dural lymphatic system at clinically relevant time points are essential.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"781-799"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke.","authors":"Theodoros Mavridis, Theodora Choratta, Androniki Papadopoulou, Assaf Sawafta, Paraschos Archontakis-Barakakis, Eleni Laou, Minas Sakellakis, Athanasios Chalkias","doi":"10.1007/s12975-024-01233-0","DOIUrl":"10.1007/s12975-024-01233-0","url":null,"abstract":"<p><p>Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"933-951"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danyang Chen, Zhixian Zhao, Shenglun Zhang, Shiling Chen, Xuan Wu, Jian Shi, Na Liu, Chao Pan, Yingxin Tang, Cai Meng, Xingwei Zhao, Bo Tao, Wenjie Liu, Diansheng Chen, Han Ding, Ping Zhang, Zhouping Tang
{"title":"Evolving Therapeutic Landscape of Intracerebral Hemorrhage: Emerging Cutting-Edge Advancements in Surgical Robots, Regenerative Medicine, and Neurorehabilitation Techniques.","authors":"Danyang Chen, Zhixian Zhao, Shenglun Zhang, Shiling Chen, Xuan Wu, Jian Shi, Na Liu, Chao Pan, Yingxin Tang, Cai Meng, Xingwei Zhao, Bo Tao, Wenjie Liu, Diansheng Chen, Han Ding, Ping Zhang, Zhouping Tang","doi":"10.1007/s12975-024-01244-x","DOIUrl":"10.1007/s12975-024-01244-x","url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is the most serious form of stroke and has limited available therapeutic options. As knowledge on ICH rapidly develops, cutting-edge techniques in the fields of surgical robots, regenerative medicine, and neurorehabilitation may revolutionize ICH treatment. However, these new advances still must be translated into clinical practice. In this review, we examined several emerging therapeutic strategies and their major challenges in managing ICH, with a particular focus on innovative therapies involving robot-assisted minimally invasive surgery, stem cell transplantation, in situ neuronal reprogramming, and brain-computer interfaces. Despite the limited expansion of the drug armamentarium for ICH over the past few decades, the judicious selection of more efficacious therapeutic modalities and the exploration of multimodal combination therapies represent opportunities to improve patient prognoses after ICH.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"975-989"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianjie Zhang, Fan Xia, Yingfeng Wan, Guohua Xi, Hua Ya, Richard F Keep
{"title":"Complement Inhibition Reduces Early Erythrolysis, Attenuates Brain Injury, Hydrocephalus, and Iron Accumulation after Intraventricular Hemorrhage in Aged Rats.","authors":"Tianjie Zhang, Fan Xia, Yingfeng Wan, Guohua Xi, Hua Ya, Richard F Keep","doi":"10.1007/s12975-024-01273-6","DOIUrl":"10.1007/s12975-024-01273-6","url":null,"abstract":"<p><p>Blood components released by erythrolysis play an important role in secondary brain injury and posthemorrhagic hydrocephalus (PHH) after intraventricular hemorrhage (IVH). The current study examined the impact of N-acetylheparin (NAH), a complement inhibitor, on early erythrolysis, PHH and iron accumulation in aged rats following IVH. This study, on 18-months-old male Fischer 344 rats, was in 3 parts. First, rats had an intracerebroventricular injection of autologous blood (IVH) mixed with NAH or saline, or saline alone. After MRI at four hours, Western blot and immunohistochemistry examined complement activation and electron microscopy choroid plexus and periventricular damage. Second, rats had an IVH with NAH or vehicle, or saline. Rats underwent serial MRI at 4 h and 1 day to assess ventricular volume and erythrolysis. Immunohistochemistry and H&E staining examined secondary brain injury. Third, rats had an IVH with NAH or vehicle. Serial MRIs on day 1 and 28 assessed ventricular volume and iron accumulation. H&E staining and immunofluorescence evaluated choroid plexus phagocytes. Complement activation was found 4 h after IVH, and co-injection of NAH inhibited that activation. NAH administration attenuated erythrolysis, reduced ventricular volume, alleviated periventricular and choroid plexus injury at 4 h and 1 day after IVH. NAH decreased iron accumulation, the number of choroid plexus phagocytes, and attenuated hydrocephalus at 28 days after IVH. Inhibiting complement can reduce early erythrolysis, attenuates hydrocephalus and iron accumulation after IVH in aged animals.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"882-895"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Wang, Dingke Wen, Fan Xia, Mei Fang, Jun Zheng, Chao You, Lu Ma
{"title":"Single-Cell Transcriptomics Revealed White Matter Repair Following Subarachnoid Hemorrhage.","authors":"Xing Wang, Dingke Wen, Fan Xia, Mei Fang, Jun Zheng, Chao You, Lu Ma","doi":"10.1007/s12975-024-01265-6","DOIUrl":"10.1007/s12975-024-01265-6","url":null,"abstract":"<p><p>Existing research indicates the potential for white matter injury repair during the subacute phase following subarachnoid hemorrhage (SAH). However, elucidating the role of brain cell subpopulations in the acute and subacute phases of SAH pathogenesis remains challenging due to the cellular heterogeneity of the central nervous system. In this study, single-cell RNA sequencing was conducted on SAH model mice to delineate distinct cell populations. Gene Set Enrichment Analysis was performed to identify involved pathways, and cellular interactions were explored using the CellChat package in R software. Validation of the findings involved a comprehensive approach, including magnetic resonance imaging, immunofluorescence double staining, and Western blot analyses. This study identified ten major brain clusters with cell type-specific gene expression patterns. Notably, we observed infiltration and clonal expansion of reparative microglia in white matter-enriched regions during the subacute stage after SAH. Additionally, microglia-associated pleiotrophin (PTN) was identified as having a role in mediating the regulation of oligodendrocyte precursor cells (OPCs) in SAH model mice, implicating the activation of the mTOR signaling pathway. These findings emphasize the vital role of microglia-OPC interactions might occur via the PTN pathway, potentially contributing to white matter repair during the subacute phase after SAH. Our analysis revealed precise transcriptional changes in the acute and subacute phases after SAH, offering insights into the mechanism of SAH and for the development of drugs that target-specific cell subtypes.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"800-816"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alka Yadav, Rich Liang, Kelly Press, Annika Schmidt, Zahra Shabani, Kun Leng, Calvin Wang, Abinav Sekhar, Joshua Shi, Garth W Devlin, Trevor J Gonzalez, Aravind Asokan, Hua Su
{"title":"Evaluation of AAV Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy.","authors":"Alka Yadav, Rich Liang, Kelly Press, Annika Schmidt, Zahra Shabani, Kun Leng, Calvin Wang, Abinav Sekhar, Joshua Shi, Garth W Devlin, Trevor J Gonzalez, Aravind Asokan, Hua Su","doi":"10.1007/s12975-024-01275-4","DOIUrl":"10.1007/s12975-024-01275-4","url":null,"abstract":"<p><p>Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous (i.v.) delivery of soluble Feline McDonough Sarcoma (FMS)-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84, and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered i.v. or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1<sup>f/f</sup> mice through i.v. followed by bAVM induction. Transduced cells in organs, vessel density, abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain endothelial cells (ECs) and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. The delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1<sup>f/f</sup> mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"914-924"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HDAC9 Deficiency Upregulates cGMP-dependent Kinase II to Mitigate Neuronal Apoptosis in Ischemic Stroke.","authors":"Haoran Lin, Yun Bei, Zexu Shen, Taofeng Wei, Yuyang Ge, Lingyan Yu, Huimin Xu, Wei He, Yunjian Dai, Difei Yao, Haibin Dai","doi":"10.1007/s12975-024-01272-7","DOIUrl":"10.1007/s12975-024-01272-7","url":null,"abstract":"<p><p>Histone deacetylase 9 (HDAC9) is implicated in ischemic stroke by genome-wide association studies. We conducted a series of experiments using a mouse model of ischemic stroke (middle cerebral artery occlusion followed by reperfusion) to examine the potential role of HDAC9. Briefly, HDAC9 was upregulated in the penumbra. Deletion of HDAC9 from neurons reduced infarction volume, inhibited neuronal apoptosis in the penumbra, and improved neurological outcomes. HDAC9 knockout from neurons in the penumbra upregulated cGMP-dependent kinase II (cGK II), blocking which abrogated the protective effects of HDAC9 deletion. Mechanistically, HDAC9 interacts with the transcription factor MEF2, thereby inhibiting MEF2's binding to the promoter region of the cGK II gene, which results in the suppression of cGK II expression. Inhibiting the interaction between HDAC9 and MEF2 by BML210 upregulated cGK II and attenuated ischemic injury in mice. These results encourage targeting the HDAC9-MEF2 interaction in developing novel therapy against ischemic stroke.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"868-881"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sricharan S Veeturi, Samuel Hall, Soichiro Fujimura, Mahmud Mossa-Basha, Elena Sagues, Edgar A Samaniego, Vincent M Tutino
{"title":"Imaging of Intracranial Aneurysms: A Review of Standard and Advanced Imaging Techniques.","authors":"Sricharan S Veeturi, Samuel Hall, Soichiro Fujimura, Mahmud Mossa-Basha, Elena Sagues, Edgar A Samaniego, Vincent M Tutino","doi":"10.1007/s12975-024-01261-w","DOIUrl":"10.1007/s12975-024-01261-w","url":null,"abstract":"<p><p>The treatment of intracranial aneurysms is dictated by its risk of rupture in the future. Several clinical and radiological risk factors for aneurysm rupture have been described and incorporated into prediction models. Despite the recent technological advancements in aneurysm imaging, linear length and visible irregularity with a bleb are the only radiological measure used in clinical prediction models. The purpose of this article is to summarize both the standard imaging techniques, including their limitations, and the advanced techniques being used experimentally to image aneurysms. It is expected that as our understanding of advanced techniques improves, and their ability to predict clinical events is demonstrated, they become an increasingly routine part of aneurysm assessment. It is important that neurovascular specialists understand the spectrum of imaging techniques available.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"1016-1027"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracellular Vesicles Obtained from Hypoxic Mesenchymal Stromal Cells Induce Neurological Recovery, Anti-inflammation, and Brain Remodeling After Distal Middle Cerebral Artery Occlusion in Rats.","authors":"Mihaela Abuzan, Roxana Surugiu, Chen Wang, Ayan Mohamud-Yusuf, Tobias Tertel, Bogdan Catalin, Thorsten R Doeppner, Bernd Giebel, Dirk M Hermann, Aurel Popa-Wagner","doi":"10.1007/s12975-024-01266-5","DOIUrl":"10.1007/s12975-024-01266-5","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) have shown considerable promise as restorative stroke treatment. In a head-to-head comparison in mice exposed to transient proximal middle cerebral artery occlusion (MCAO), sEVs obtained from MSCs cultured under hypoxic conditions particularly potently enhanced long-term brain tissue survival, microvascular integrity, and angiogenesis. These observations suggest that hypoxic preconditioning might represent the strategy of choice for harvesting MSC-sEVs for clinical stroke trials. To test the efficacy of hypoxic MSCs in a second stroke model in an additional species, we now exposed 6-8-month-old Sprague-Dawley rats to permanent distal MCAO and intravenously administered vehicle, platelet sEVs, or sEVs obtained from hypoxic MSCs (1% O<sub>2</sub>; 2 × 10<sup>6</sup> or 2 × 10<sup>7</sup> cell equivalents/kg) at 24 h, 3, 7, and 14 days post-MCAO. Over 28 days, motor-coordination recovery was evaluated by rotating pole and cylinder tests. Ischemic injury, brain inflammatory responses, and peri-infarct angiogenesis were assessed by infarct volumetry and immunohistochemistry. sEVs obtained from hypoxic MSCs did not influence infarct volume in this permanent MCAO model, but promoted motor-coordination recovery over 28 days at both sEV doses. Ischemic injury was associated with brain ED1<sup>+</sup> macrophage infiltrates and Iba1<sup>+</sup> microglia accumulation in the peri-infarct cortex of vehicle-treated rats. Hypoxic MSC-sEVs reduced brain macrophage infiltrates and microglia accumulation in the peri-infarct cortex. In vehicle-treated rats, CD31<sup>+</sup>/BrdU<sup>+</sup> proliferating endothelial cells were found in the peri-infarct cortex. Hypoxic MSC-sEVs increased the number of CD31<sup>+</sup>/BrdU<sup>+</sup> proliferating endothelial cells. Our results provide evidence that hypoxic MSC-derived sEVs potently enhance neurological recovery, reduce neuroinflammation. and increase angiogenesis in rat permanent distal MCAO.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"817-830"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Arba, Simone Ferretti, Richard Leigh, Andreia Fara, Steven J Warach, Marie Luby, Kennedy R Lees, Jesse Dawson
{"title":"Cerebral Small Vessel Disease and Infarct Growth in Acute Ischemic Stroke Treated with Intravenous Thrombolysis.","authors":"Francesco Arba, Simone Ferretti, Richard Leigh, Andreia Fara, Steven J Warach, Marie Luby, Kennedy R Lees, Jesse Dawson","doi":"10.1007/s12975-024-01277-2","DOIUrl":"10.1007/s12975-024-01277-2","url":null,"abstract":"<p><p>We investigated relations between cerebral small vessel disease (cSVD) markers and evolution of the ischemic tissue from ischemic core to final infarct in people with acute ischemic stroke treated with intravenous thrombolysis. Data from the Stroke Imaging Repository (STIR) and Virtual International Stroke Trials Archive (VISTA) were used. Any pre-existing lacunar infarcts and white matter hyperintensities (WMH) were assessed on magnetic resonance (MR) before thrombolytic therapy. Acute ischemic core and final infarct volume were then assessed by two independent radiologists. The relationship among baseline markers of cSVD, acute ischemic core volume, final infarct volume, infarct growth (IG = final infarct - ischemic core), and infarct growth ratio (IGR = final infarct/ischemic core) was then assessed using linear and ordinal regression adjusted for age, sex, onset-to-treatment time, and stroke severity. We included 165 patients, mean (± SD) age 69.5 (± 15.7) years, 74 (45%) males, mean (± SD) ischemic core volume 25.48 (± 42.22) ml, final infarct volume 52.06 (± 72.88) ml, IG 26.58 (± 51.02) ml, IGR 8.23 (± 38.12). Seventy (42%) patients had large vessel occlusion, 20 (12%) acute small subcortical infarct. WMHs were present in 131 (79%) and lacunar infarcts in 61 (37%) patients. Final infarct volumes were 53.8 ml and 45.2 ml (WMHs/no WMHs), p = 0.139, and 24.6 ml and 25.9 ml (lacunar infarcts/no lacunar infarcts), p = 0.842. In linear and ordinal regression analyses, presence of lacunar infarcts was associated with smaller IG (β = - 0.17; p = 0.024; cOR = 0.52; 95%CI = 0.28-0.96, respectively) and WMHs were associated with smaller IGR (β = - 0.30; p = 0.004; cOR = 0.27; 95%CI = 0.11-0.69, respectively). In people with acute ischemic stroke treated with intravenous thrombolysis, cSVD features were associated with smaller growth of the acute ischemic area, suggesting less salvageable tissue at time of reperfusion therapy.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"925-932"},"PeriodicalIF":3.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}