Transactions of Nonferrous Metals Society of China最新文献

筛选
英文 中文
Stable and reversible zinc metal anode with fluorinated graphite nanosheets surface coating 具有氟化石墨纳米片表面涂层的稳定可逆锌金属阳极
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66613-6
Hong CHANG , Zhen-ya LUO , Xue-ru SHI , Xin-xin CAO , Shu-quan LIANG
{"title":"Stable and reversible zinc metal anode with fluorinated graphite nanosheets surface coating","authors":"Hong CHANG ,&nbsp;Zhen-ya LUO ,&nbsp;Xue-ru SHI ,&nbsp;Xin-xin CAO ,&nbsp;Shu-quan LIANG","doi":"10.1016/S1003-6326(24)66613-6","DOIUrl":"10.1016/S1003-6326(24)66613-6","url":null,"abstract":"<div><div>A highly stable zinc metal anode modified with a fluorinated graphite nanosheets (FGNSs) coating was designed. The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses dendrite growth. Moreover, the high electronegativity exhibited by fluorine atoms creates an almost superhydrophobic solid−liquid interface, thereby reducing the interaction between solvent water and the zinc substrate. Consequently, this leads to a significant inhibition of hydrogen evolution corrosion and other side reactions. The modified anode demonstrates exceptional cycling stability, as symmetric cells exhibit sustained cycling for over 1400 h at a current density of 5 mA/cm<sup>2</sup>. Moreover, the full cells with NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> cathode exhibit an impressive capacity retention rate of 92.2% after undergoing 1000 cycles.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3358-3371"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput studies and machine learning for design of β titanium alloys with optimum properties 利用高通量研究和机器学习设计具有最佳性能的 β 钛合金
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66602-1
Wei-min CHEN , Jin-feng LING , Kewu BAI , Kai-hong ZHENG , Fu-xing YIN , Li-jun ZHANG , Yong DU
{"title":"High-throughput studies and machine learning for design of β titanium alloys with optimum properties","authors":"Wei-min CHEN ,&nbsp;Jin-feng LING ,&nbsp;Kewu BAI ,&nbsp;Kai-hong ZHENG ,&nbsp;Fu-xing YIN ,&nbsp;Li-jun ZHANG ,&nbsp;Yong DU","doi":"10.1016/S1003-6326(24)66602-1","DOIUrl":"10.1016/S1003-6326(24)66602-1","url":null,"abstract":"<div><div>Based on experimental data, machine learning (ML) models for Young’s modulus, hardness, and hot-working ability of Ti-based alloys were constructed. In the models, the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples. Then, the Ti−(22±0.5)at.%Nb−(30±0.5)at.%Zr−(4±0.5)at.%Cr (TNZC) alloy with a single body-centered cubic (BCC) phase was screened in an interactive loop. The experimental results exhibited a relatively low Young’s modulus of (58±4) GPa, high nanohardness of (3.4±0.2) GPa, high microhardness of HV (520±5), high compressive yield strength of (1220±18) MPa, large plastic strain greater than 30%, and superior dry- and wet-wear resistance. This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties. Moreover, it is indicated that TNZC alloy is an attractive candidate for biomedical applications.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3194-3207"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural evolution and deformation mechanisms of superplastic aluminium alloys: A review 超塑性铝合金的微结构演变和变形机制:综述
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66596-9
Guo-tong ZOU , Shi-jie CHEN , Ya-qi XU , Bao-kun SHEN , Yu-jia ZHANG , Ling-ying YE
{"title":"Microstructural evolution and deformation mechanisms of superplastic aluminium alloys: A review","authors":"Guo-tong ZOU ,&nbsp;Shi-jie CHEN ,&nbsp;Ya-qi XU ,&nbsp;Bao-kun SHEN ,&nbsp;Yu-jia ZHANG ,&nbsp;Ling-ying YE","doi":"10.1016/S1003-6326(24)66596-9","DOIUrl":"10.1016/S1003-6326(24)66596-9","url":null,"abstract":"<div><div>Aluminium alloy is one of the earliest and most widely used superplastic materials. The objective of this work is to review the scientific advances in superplastic Al alloys. Particularly, the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation. The evolution of grain structure, texture, secondary phase, and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail. The quantitative evaluation of different deformation mechanisms based on the focus ion beam (FIB)-assisted surface study provides new insights into the superplasticity of Al alloys. The main features, such as grain boundary sliding, intragranular dislocation slip, and diffusion creep can be observed intuitively and analyzed quantitatively. This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3069-3092"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation 增加预变形的 T8 时效铝-铜-锂合金的强化机制
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66599-4
San-xi DENG , Jin-feng LI , Li WANG , Yue-yan CHEN , Zheng-wu XIANG , Peng-cheng MA , Yong-lai CHEN , Dan-yang LIU
{"title":"Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation","authors":"San-xi DENG ,&nbsp;Jin-feng LI ,&nbsp;Li WANG ,&nbsp;Yue-yan CHEN ,&nbsp;Zheng-wu XIANG ,&nbsp;Peng-cheng MA ,&nbsp;Yong-lai CHEN ,&nbsp;Dan-yang LIU","doi":"10.1016/S1003-6326(24)66599-4","DOIUrl":"10.1016/S1003-6326(24)66599-4","url":null,"abstract":"<div><div>The microstructure evolution and mechanical properties of a T8-aged Al−Cu−Li alloy with increased pre-deformation (0−15%) were investigated, revealing the microstructure−strength relationship and the intrinsic strengthening mechanism. The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility. Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston (GP) zones and provide more nucleation sites for <em>T</em>1 precipitates. This leads to more intensive and finer <em>T</em>1 precipitates in the samples with higher pre-deformation levels. Simultaneously, the enhanced precipitation of <em>T</em>1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of <em>θ′</em> precipitates. The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from <em>T</em>1 and <em>θ′</em> precipitates decrease with increasing pre-deformation. The reduced diameters of <em>T</em>1 precipitates are primarily responsible for their weakened strengthening effects. Therefore, the improved strength of the T8-aged Al−Cu−Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3151-3169"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and martensitic transformation in quaternary NiTiHfV alloy 第四态 NiTiHfV 合金的显微组织和马氏体转变
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66608-2
Aleksandr V. SHUITCEV , Yi REN , Ze-zhong ZHANG , Roman N. VASIN , Bin SUN , Li LI , Yun-xiang TONG
{"title":"Microstructure and martensitic transformation in quaternary NiTiHfV alloy","authors":"Aleksandr V. SHUITCEV ,&nbsp;Yi REN ,&nbsp;Ze-zhong ZHANG ,&nbsp;Roman N. VASIN ,&nbsp;Bin SUN ,&nbsp;Li LI ,&nbsp;Yun-xiang TONG","doi":"10.1016/S1003-6326(24)66608-2","DOIUrl":"10.1016/S1003-6326(24)66608-2","url":null,"abstract":"<div><div>The effect of age hardening on the microstructure, martensitic transformation behavior, and shape memory properties of the (Ni<sub>50</sub>Ti<sub>30</sub>Hf<sub>20</sub>)<sub>95</sub>V<sub>5</sub> alloy was investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, differential scanning calorimetry, microhardness, and bending tests. The results demonstrate a significant influence of V addition on the microstructure of the alloy. V addition leads to the formation of a (Ni,V)<sub>2</sub>(Ti,Hf)-type Laves phase, which coexists with <em>B</em>19<em>‘</em> martensite at room temperature. Aging at 550 °C results in precipitation hardening due to the formation of nano-scale orthorhombic <em>H</em>-phase, with the peak hardness observed after 3 h of aging. The alloy at peak hardness state exhibits higher transformation strain and lower unrecovered strain compared to the solution-treated sample. The aged sample achieves a maximum transformation strain of 1.56% under 500 MPa.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3282-3294"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption behaviors and mechanisms of gold recovery from thiosulfate solution by ion exchange resin 离子交换树脂从硫代硫酸盐溶液中回收金的吸附行为和机理
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66614-8
Zhong-lin DONG, Tao JIANG, Bin XU, Qian LI, Yong-bin YANG
{"title":"Adsorption behaviors and mechanisms of gold recovery from thiosulfate solution by ion exchange resin","authors":"Zhong-lin DONG,&nbsp;Tao JIANG,&nbsp;Bin XU,&nbsp;Qian LI,&nbsp;Yong-bin YANG","doi":"10.1016/S1003-6326(24)66614-8","DOIUrl":"10.1016/S1003-6326(24)66614-8","url":null,"abstract":"<div><div>The adsorption behaviors and mechanisms of gold from thiosulfate solution on strong-base anion exchange resin were systematically investigated. The comparison experiment of adsorption ability and selectivity for gold showed that gel Amberlite IRA-400 resin with Type I quaternary ammonium functional group had better adsorption performance. The increases of resin dosage, ammonia concentration and solution pH were favorable to gold adsorption, whereas the rises of cupric and thiosulfate concentrations were disadvantageous to gold loading. Microscopic characterization results indicated that gold was adsorbed in the form of [Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3–</sup> complex anion by exchanging with the counter ion Cl<sup>–</sup> in the functional group of the resin. Density functional theory calculation result manifested that gold adsorption was mainly depended on the hydrogen bond and van der Waals force generated between O atom in [Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3–</sup> and H atom in the quaternary ammonium functional group of the resin.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3372-3385"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving comprehensive properties of Cu−11.9Al−2.5Mn shape memory alloy by adding multi-layer graphene carried by Cu51Zr14 inoculant particles 通过添加以 Cu51Zr14 接种颗粒为载体的多层石墨烯改善 Cu-11.9Al-2.5Mn 形状记忆合金的综合性能
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66607-0
Zhi-xian JIAO , Qing-zhou WANG , Yan-jun DING , Fu-xing YIN , Chao-hui XU , Cui-hong HAN , Qi-xiang FAN
{"title":"Improving comprehensive properties of Cu−11.9Al−2.5Mn shape memory alloy by adding multi-layer graphene carried by Cu51Zr14 inoculant particles","authors":"Zhi-xian JIAO ,&nbsp;Qing-zhou WANG ,&nbsp;Yan-jun DING ,&nbsp;Fu-xing YIN ,&nbsp;Chao-hui XU ,&nbsp;Cui-hong HAN ,&nbsp;Qi-xiang FAN","doi":"10.1016/S1003-6326(24)66607-0","DOIUrl":"10.1016/S1003-6326(24)66607-0","url":null,"abstract":"<div><div>In order to improve the comprehensive properties of the Cu−11.9Al−2.5Mn shape memory alloy (SMA), multilayer graphene (MLG) carried by Cu<sub>51</sub>Zr<sub>14</sub> inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG−Cu<sub>51</sub>Zr<sub>14</sub> composite powders. In the resultant novel MLG/Cu−Al−Mn composites, MLG in fragmented or flocculent form has a good bonding with the Cu−Al−Mn matrix. MLG can prevent the coarsening of grains of the Cu−Al−Mn SMA and cause thermal mismatch dislocations near the MLG/Cu−Al−Mn interfaces. The damping and mechanical properties of the MLG/Cu−Al−Mn composites are significantly improved. When the content of MLG reaches 0.2 wt.%, the highest room temperature damping of 0.0558, tensile strength of 801.5 MPa, elongation of 10.8%, and hardness of HV 308 can be obtained. On the basis of in-depth observation of microstructures, combined with the theory of internal friction and strengthening and toughening theories of metals, the relevant mechanisms are discussed.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3265-3281"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium titanate corrosion inhibitor enabling carbon as inert anode for oxygen evolution in molten chlorides 钛酸钙缓蚀剂使碳成为熔融氯化物中氧进化的惰性阳极
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66616-1
Kai-fa DU , Wen-miao LI , Pei-lin WANG , Lei GUO , Di CHEN , Yong-song MA , Rui YU , Hua-yi YIN , Di-hua WANG
{"title":"Calcium titanate corrosion inhibitor enabling carbon as inert anode for oxygen evolution in molten chlorides","authors":"Kai-fa DU ,&nbsp;Wen-miao LI ,&nbsp;Pei-lin WANG ,&nbsp;Lei GUO ,&nbsp;Di CHEN ,&nbsp;Yong-song MA ,&nbsp;Rui YU ,&nbsp;Hua-yi YIN ,&nbsp;Di-hua WANG","doi":"10.1016/S1003-6326(24)66616-1","DOIUrl":"10.1016/S1003-6326(24)66616-1","url":null,"abstract":"<div><div>The corrosion inhibition efficacy of titanate (CaTiO<sub>3</sub>) for carbon anodes in molten salts was investigated through various analytical techniques, including linear sweep voltammetry, X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy. The results demonstrate that the addition of CaTiO<sub>3</sub> corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO<sub>3</sub> layer during the electrolysis process in molten CaCl<sub>2</sub>−CaO. Subsequently, the passivated carbon anode effectively undergoes the oxygen evolution reaction, with an optimal current density for passivation identified at 400 mA/cm<sup>2</sup>. Comprehensive investigations, including CaTiO<sub>3</sub> solubility tests in molten CaCl<sub>2</sub>−CaO and numerical modeling of the stability of complex ionic structures, provide compelling evidence supporting “complexation−precipitation” passivation mechanism. This mechanism involves the initial formation of a complex containing TiO<sub>2</sub>·<em>n</em>CaO by CaTiO<sub>3</sub> and CaO, which subsequently decomposes to yield CaTiO<sub>3</sub>, firmly coating the surface of the carbon anode. In practical applications, the integration of CaTiO<sub>3</sub> corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl<sub>2</sub>−CaO.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3400-3411"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase transformation in titanium alloys: A review 钛合金中的相变:综述
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66597-0
Chang-chang LIU, Yang-huan-zi LI, Ji GU, Min SONG
{"title":"Phase transformation in titanium alloys: A review","authors":"Chang-chang LIU,&nbsp;Yang-huan-zi LI,&nbsp;Ji GU,&nbsp;Min SONG","doi":"10.1016/S1003-6326(24)66597-0","DOIUrl":"10.1016/S1003-6326(24)66597-0","url":null,"abstract":"<div><div>Due to a series of exceptional properties, titanium and titanium alloys have received extensive attention in recent years. Different from other alloy systems, there are two allotropes and a sequence of metastable phases in titanium alloys. By summarizing the recent investigations, the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed. For the phase transformation only involving <em>α</em> and <em>β</em> phases, it can be divided into <em>β</em>→<em>α</em> transformation and a reverse transformation. The former one has been demonstrated from the orientation relationship between <em>α</em> and <em>β</em> phases and the regulation of <em>α</em> morphology. For the latter transformation, the role of the stress has been discussed. In terms of the metastable phases, the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed. Finally, some suggestions about the development of titanium alloys have been proposed.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3093-3117"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: A review 优化阳极/电解质界面的电解质工程,实现卓越的锌离子水电池:综述
IF 4.7 1区 材料科学
Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI: 10.1016/S1003-6326(24)66598-2
Hua-ming YU, Dong-ping CHEN, Li-jin ZHANG, Shao-zhen HUANG, Liang-jun ZHOU, Gui-chao KUANG, Wei-feng WEI, Li-bao CHEN, Yue-jiao CHEN
{"title":"Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: A review","authors":"Hua-ming YU,&nbsp;Dong-ping CHEN,&nbsp;Li-jin ZHANG,&nbsp;Shao-zhen HUANG,&nbsp;Liang-jun ZHOU,&nbsp;Gui-chao KUANG,&nbsp;Wei-feng WEI,&nbsp;Li-bao CHEN,&nbsp;Yue-jiao CHEN","doi":"10.1016/S1003-6326(24)66598-2","DOIUrl":"10.1016/S1003-6326(24)66598-2","url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety, cost-effectiveness and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution reaction, and interfacial passivation occurring at the anode/electrolyte interface (AEI) have hindered their practical application. Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs. The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed. A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided. The effectiveness evaluation techniques for stable AEI are also analyzed, including the interfacial chemistry and surface morphology evolution of the Zn anode. Finally, suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering, which may pave the way for developing high-performance AZIBs.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3118-3150"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信