P. Crous, J. Boers, D. Holdom, E. Osieck, T. V. Steinrucken, Y. Tan, J. Vitelli, R. Shivas, M. Barrett, Amelia-Grace Boxshall, J. Broadbridge, E. Larsson, T. Lebel, U. Pinruan, S. Sommai, P. Alvarado, G. Bonito, C. Decock, S. De La Peña-Lastra, G. Delgado, J. Houbraken, J. Maciá‐Vicente, H. Raja, A. Rigueiro-Rodríguez, A. Rodríguez, M. Wingfield, S. J. Adams, A. Akulov, T. AL-Hidmi, V. Antonín, S. Arauzo, F. Arenas, F. Armada, J. Aylward, J. Bellanger, A. Berraf-Tebbal, A. Bidaud, F. Boccardo, J. Cabero, F. Calledda, G. Corriol, J. L. Crane, J. Dearnaley, B. Dima, F. Dovana, A. Eichmeier, F. Esteve-Raventós, M. Fine, L. Ganzert, D. García, D. Torres-Garcia, J. Gené, A. Gutiérrez, P. Iglesias, Ł. Istel, P. Jangsantear, G. M. Jansen, M. Jeppson, N. Karun, A. Karich, P. Khamsuntorn, K. Kokkonen, M. Kolařík, A. Kubátová, R. Labuda, A. Lagashetti, N. Lifshitz, C. Linde, M. Loizides, J. Luangsa-ard, P. Lueangjaroenkit, S. Mahadevakumar, A. E. Mahamedi, D. Malloch, S. Marincowitz, A. Mateos, P. Moreau, A. Miller
{"title":"Fungal Planet description sheets: 1383–1435","authors":"P. Crous, J. Boers, D. Holdom, E. Osieck, T. V. Steinrucken, Y. Tan, J. Vitelli, R. Shivas, M. Barrett, Amelia-Grace Boxshall, J. Broadbridge, E. Larsson, T. Lebel, U. Pinruan, S. Sommai, P. Alvarado, G. Bonito, C. Decock, S. De La Peña-Lastra, G. Delgado, J. Houbraken, J. Maciá‐Vicente, H. Raja, A. Rigueiro-Rodríguez, A. Rodríguez, M. Wingfield, S. J. Adams, A. Akulov, T. AL-Hidmi, V. Antonín, S. Arauzo, F. Arenas, F. Armada, J. Aylward, J. Bellanger, A. Berraf-Tebbal, A. Bidaud, F. Boccardo, J. Cabero, F. Calledda, G. Corriol, J. L. Crane, J. Dearnaley, B. Dima, F. Dovana, A. Eichmeier, F. Esteve-Raventós, M. Fine, L. Ganzert, D. García, D. Torres-Garcia, J. Gené, A. Gutiérrez, P. Iglesias, Ł. Istel, P. Jangsantear, G. M. Jansen, M. Jeppson, N. Karun, A. Karich, P. Khamsuntorn, K. Kokkonen, M. Kolařík, A. Kubátová, R. Labuda, A. Lagashetti, N. Lifshitz, C. Linde, M. Loizides, J. Luangsa-ard, P. Lueangjaroenkit, S. Mahadevakumar, A. E. Mahamedi, D. Malloch, S. Marincowitz, A. Mateos, P. Moreau, A. Miller","doi":"10.3767/persoonia.2022.48.08","DOIUrl":"https://doi.org/10.3767/persoonia.2022.48.08","url":null,"abstract":"\u0000 Novel species of fungi described in this study include those from various countries as follows: Australia, Agaricus albofoetidus, Agaricus aureoelephanti and Agaricus parviumbrus on soil, Fusarium ramsdenii from stem cankers of Araucaria cunninghamii, Keissleriella sporoboli from stem of Sporobolus natalensis, Leptosphaerulina queenslandica and Pestalotiopsis chiaroscuro from leaves of Sporobolus natalensis, Serendipita petricolae as endophyte from roots of Eriochilus petricola, Stagonospora tauntonensis from stem of Sporobolus natalensis, Teratosphaeria carnegiei from leaves of Eucalyptus grandis × E. camaldulensis and Wongia ficherai from roots of Eragrostis curvula. Canada, Lulworthia fundyensis from intertidal wood and Newbrunswickomyces abietophilus (incl. Newbrunswickomyces gen. nov.) on buds of Abies balsamea. Czech Republic, Geosmithia funiculosa from a bark beetle gallery on Ulmus minor and Neoherpotrichiella juglandicola (incl. Neoherpotrichiella gen. nov.) from wood of Juglans regia. France, Aspergillus rouenensis and Neoacrodontium gallica (incl. Neoacrodontium gen. nov.) from bore dust of Xestobium rufovillosum feeding on Quercus wood, Endoradiciella communis (incl. Endoradiciella gen. nov.) endophytic in roots of Microthlaspi perfoliatum and Entoloma simulans on soil. India, Amanita konajensis on soil and Keithomyces indicus from soil. Israel, Microascus rothbergiorum from Stylophora pistillata. Italy, Calonarius ligusticus on soil. Netherlands, Appendopyricularia juncicola (incl. Appendopyricularia gen. nov.), Eriospora juncicola and Tetraploa juncicola on dead culms of Juncus effusus, Gonatophragmium physciae on Physcia caesia and Paracosmospora physciae (incl. Paracosmospora gen. nov.) on Physcia tenella, Myrmecridium phragmitigenum on dead culm of Phragmites australis, Neochalara lolae on stems of Pteridium aquilinum, Niesslia nieuwwulvenica on dead culm of undetermined Poaceae, Nothodevriesia narthecii (incl. Nothodevriesia gen. nov.) on dead leaves of Narthecium ossifragum and Parastenospora pini (incl. Parastenospora gen. nov.) on dead twigs of Pinus sylvestris. Norway, Verticillium bjoernoeyanum from sand grains attached to a piece of driftwood on a sandy beach. Portugal, Collybiopsis cimrmanii on the base of living Quercus ilex and amongst dead leaves of Laurus and herbs. South Africa, Paraproliferophorum hyphaenes (incl. Paraproliferophorum gen. nov.) on living leaves of Hyphaene sp. and Saccothecium widdringtoniae on twigs of Widdringtonia wallichii. Spain, Cortinarius dryosalor on soil, Cyphellophora endoradicis endophytic in roots of Microthlaspi perfoliatum, Geoglossum laurisilvae on soil, Leptographium gemmatum from fluvial sediments, Physalacria auricularioides from a dead twig of Castanea sativa, Terfezia bertae and Tuber davidlopezii in soil. Sweden, Alpova larskersii, Inocybe alpestris and Inocybe boreogodeyi on soil. Thailand, Russula banwatchanensis, Russula purpureoviridis and Russula lilacina on soil. Ukrai","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129281030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Maia, M. Horta Jung, G. Carella, I. Milenković, J. Janoušek, M. Tomšovský, S. Mosca, L. Schena, A. Cravador, S. Moricca, T. Jung
{"title":"Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus","authors":"C. Maia, M. Horta Jung, G. Carella, I. Milenković, J. Janoušek, M. Tomšovský, S. Mosca, L. Schena, A. Cravador, S. Moricca, T. Jung","doi":"10.3767/persoonia.2022.48.02","DOIUrl":"https://doi.org/10.3767/persoonia.2022.48.02","url":null,"abstract":"\u0000 During an oomycete survey in December 2015, 10 previously unknown Halophytophthora taxa were isolated from marine and brackish water of tidal ponds and channels in saltmarshes, lagoon ecosystems and river estuaries at seven sites along the Algarve coast in the South of Portugal. Phylogenetic analyses of LSU and ITS datasets, comprising all described Halophytophthora species, the 10 new Halophytophthora taxa and all relevant and distinctive sequences available from GenBank, provided an updated phylogeny of the genus Halophytophthora s.str. showing for the first time a structure of 10 clades designated as Clades 1–10. Nine of the 10 new Halophytophthora taxa resided in Clade 6 together with H. polymorphica and H. vesicula. Based on differences in morphology and temperature-growth relations and a multigene (LSU, ITS, Btub, hsp90, rpl10, tigA, cox1, nadh1, rps10) phylogeny, eight new Halophytophthora taxa from Portugal are described here as H. brevisporangia, H. celeris, H. frigida, H. lateralis, H. lusitanica, H. macrosporangia, H. sinuata and H. thermoambigua. Three species, H. frigida, H. macrosporangia and H. sinuata, have a homothallic breeding system while the remaining five species are sterile. Pathogenicity and litter decomposition tests are underway to clarify their pathological and ecological role in the marine and brackish-water ecosystems. More oomycete surveys in yet undersurveyed regions of the world and population genetic or phylogenomic analyses of global populations are needed to clarify the origin of the new Halophytophthora species.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115231044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. M. Vidal, P. Cseh, Z. Merényi, L. Bona, S. Rudnóy, Z. Bratek, A. Paz, P. Mleczko, M. Kozak, P. Chachuła, B. Assyov, M. Slavova, V. Kaounas, G. Konstantinidis, F. Rodríguez, J. Cabero, F. García-Verdugo, F. García-Alonso, R. Mahiques, P. Fantini, J. States
{"title":"The genus Gautieria (Gomphales) in Europe and the Mediterranean Basin: a morphological and phylogenetic taxonomic revision","authors":"J. M. Vidal, P. Cseh, Z. Merényi, L. Bona, S. Rudnóy, Z. Bratek, A. Paz, P. Mleczko, M. Kozak, P. Chachuła, B. Assyov, M. Slavova, V. Kaounas, G. Konstantinidis, F. Rodríguez, J. Cabero, F. García-Verdugo, F. García-Alonso, R. Mahiques, P. Fantini, J. States","doi":"10.3767/persoonia.2023.50.03","DOIUrl":"https://doi.org/10.3767/persoonia.2023.50.03","url":null,"abstract":"\u0000 Type material and additional collections of 11 taxa of Gautieria described in Europe and North Africa have been studied, namely G. dubia, G. graveolens, G. morchelliformis var. globispora, G. morchelliformis var. magnicellaris, G. morchelliformis var. morchelliformis, G. morchelliformis var. stenospora, G. otthii, G. pseudovestita, G. retirugosa, G. trabutii and G. villosa. At the same time, morphological and genetic studies on recent and herbarium collections from several European countries have been carried out. This enabled clarification of sections within Gautieria and differentiation of 28 taxa, of which 21 are new to science. However, the deeper relationships and nomenclature changes related to the phylogenetic position of the genus Gautieria within Gomphaceae will not be addressed in this study because they would require a more complete molecular analysis together with that of related genera, e.g., Gomphus, Turbinellus, and the four subgenera of Ramaria. In addition, a lectotype for G. villosa var. villosa and reference specimens for G. graveolens and G. morchelliformis var. morchelliformis are selected, and the new combination G. morchelliformis var. dubia is proposed. Detailed descriptions, macro- and microphotographs and distribution maps of all taxa are provided, as well as extensive information on their ecology, chorology and phylogeny. A key is included to facilitate identification of taxa.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"139 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128924133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of the European species of the genus Clitocella (Entolomataceae, Agaricales) with notes on extralimital taxa","authors":"A. Vizzini, G. Consiglio, M. Marchetti","doi":"10.3767/persoonia.2023.50.04","DOIUrl":"https://doi.org/10.3767/persoonia.2023.50.04","url":null,"abstract":"\u0000 A revision, based on morphological and multigene analysis, of the Clitocella species currently present in Europe is provided. Portions of nrITS rDNA, nr28S rDNA (LSU), RNA polymerase II second largest subunit (RPB2), translation elongation factor 1-alpha (EF-1α), and ATPase subunit 6 (ATP6), were used to sort out the relationships of the species within the genus. Three subgenera were recognized: Clitocella subg. Clitocella encompassing C. popinalis, C. colorata, C. mundula, C. nigrescens, C. obscura and the new species C. solaris from Switzerland; the new Clitocella subg. Paraclitopilus including C. fallax and C. blancii; and the new Clitocella subg. Rhodopleurella for accommodating C. termitophila, a peculiar entity characterized by a pleurotoid habit and growing on decaying, abandoned termite nests in the Dominican Republic. Clitocella colorata originally described from China is here reported and described for the first time in Europe (Italy and Estonia). Rhodocybe cupressicola and Clitopilus ammophilus are reduced to later synonyms of Rhodopaxillus nigrescens; similarly, Clitopilus amarus is treated as a later synonym of Omphalia fallax while Rhodocybe amarella and R. ochraceopallida of Rhodopaxillus blancii. Finally, Austrian and Swedish herbarium collections identified as Rhodocybe, a doubtful taxon considered by several modern authors occasionally as either a similar but distinct species from R. popinalis or as a dwarfish, puny and odourless form of R. popinalis, have been proved to be R. tugrulii, a species recently described from Turkey and Estonia, and also later reported from Italy and USA.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130285235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Crous, E. Osieck, R. Shivas, Y. Tan, S. Bishop-Hurley, F. Esteve-Raventós, E. Larsson, J. Luangsa-ard, F. Pancorbo, S. Balashov, I. Baseia, T. Boekhout, S. Chandranayaka, D. Cowan, R.H.S.F. Cruz, P. Czachura, S. De La Peña-Lastra, F. Dovana, B. Drury, J. Fell, A. Flakus, R. Fotedar, Ž. Jurjević, A. Kolecka, J. Mack, G. Maggs-Kölling, S. Mahadevakumar, A. Mateos, S. Mongkolsamrit, W. Noisripoom, M. Plaza, D. Overy, M. Piątek, M. Sandoval-Denis, J. Vauras, M. Wingfield, S. Abell, A. Ahmadpour, A. Akulov, F. Alavi, Z. Alavi, A. Altes, P. Alvarado, G. Anand, N. Ashtekar, B. Assyov, G. Banc-Prandi, K. D. Barbosa, G. G. Barreto, J. Bellanger, J. Bezerra, D. J. Bhat, P. Bilański, T. Bose, F. Bozok, J. Chaves, D. Costa-Rezende, C. Danteswari, Valeriy Darmostuk, G. Delgado, S. Denman, A. Eichmeier, J. Etayo, G. Eyssartier, S. Faulwetter, K. Ganga, Y. Ghosta, J. Goh, J. S. Góis, D. Gramaje, L. Granit, M. Groenewald, G. Gulden, L.F.P. Gusmão, A. Hammerbacher, Z. Heidarian, N. Hywel-Jones, R. Jankowiak, M. Kaliyap
{"title":"Fungal Planet description sheets: 1478–1549","authors":"P. Crous, E. Osieck, R. Shivas, Y. Tan, S. Bishop-Hurley, F. Esteve-Raventós, E. Larsson, J. Luangsa-ard, F. Pancorbo, S. Balashov, I. Baseia, T. Boekhout, S. Chandranayaka, D. Cowan, R.H.S.F. Cruz, P. Czachura, S. De La Peña-Lastra, F. Dovana, B. Drury, J. Fell, A. Flakus, R. Fotedar, Ž. Jurjević, A. Kolecka, J. Mack, G. Maggs-Kölling, S. Mahadevakumar, A. Mateos, S. Mongkolsamrit, W. Noisripoom, M. Plaza, D. Overy, M. Piątek, M. Sandoval-Denis, J. Vauras, M. Wingfield, S. Abell, A. Ahmadpour, A. Akulov, F. Alavi, Z. Alavi, A. Altes, P. Alvarado, G. Anand, N. Ashtekar, B. Assyov, G. Banc-Prandi, K. D. Barbosa, G. G. Barreto, J. Bellanger, J. Bezerra, D. J. Bhat, P. Bilański, T. Bose, F. Bozok, J. Chaves, D. Costa-Rezende, C. Danteswari, Valeriy Darmostuk, G. Delgado, S. Denman, A. Eichmeier, J. Etayo, G. Eyssartier, S. Faulwetter, K. Ganga, Y. Ghosta, J. Goh, J. S. Góis, D. Gramaje, L. Granit, M. Groenewald, G. Gulden, L.F.P. Gusmão, A. Hammerbacher, Z. Heidarian, N. Hywel-Jones, R. Jankowiak, M. Kaliyap","doi":"10.3767/persoonia.2023.50.05","DOIUrl":"https://doi.org/10.3767/persoonia.2023.50.05","url":null,"abstract":"\u0000 Novel species of fungi described in this study include those from various countries as follows: Australia, Aschersonia mackerrasiae on whitefly, Cladosporium corticola on bark of Melaleuca quinquenervia, Penicillium nudgee from soil under Melaleuca quinquenervia, Pseudocercospora blackwoodiae on leaf spot of Persoonia falcata, and Pseudocercospora dalyelliae on leaf spot of Senna alata. Bolivia, Aspicilia lutzoniana on fully submersed siliceous schist in high-mountain streams, and Niesslia parviseta on the lower part and apothecial discs of Erioderma barbellatum on a twig. Brazil, Cyathus bonsai on decaying wood, Geastrum albofibrosum from moist soil with leaf litter, Laetiporus pratigiensis on a trunk of a living unknown hardwood tree species, and Scytalidium synnematicum on dead twigs of unidentified plant. Bulgaria, Amanita abscondita on sandy soil in a plantation of Quercus suber. Canada, Penicillium acericola on dead bark of Acer saccharum, and Penicillium corticola on dead bark of Acer saccharum. China, Colletotrichum qingyuanense on fruit lesion of Capsicum annuum. Denmark, Helminthosphaeria leptospora on corticioid Neohypochnicium cremicolor. Ecuador (Galapagos), Phaeosphaeria scalesiae on Scalesia sp. Finland, Inocybe jacobssonii on calcareous soils in dry forests and park habitats. France, Cortinarius rufomyrrheus on sandy soil under Pinus pinaster, and Periconia neominutissima on leaves of Poaceae. India, Coprinopsis fragilis on decaying bark of logs, Filoboletus keralensis on unidentified woody substrate, Penicillium sankaranii from soil, Physisporinus tamilnaduensis on the trunk of Azadirachta indica, and Poronia nagaraholensis on elephant dung. Iran, Neosetophoma fici on infected leaves of Ficus elastica. Israel, Cnidariophoma eilatica (incl. Cnidariophoma gen. nov.) from Stylophora pistillata. Italy, Lyophyllum obscurum on acidic soil. Namibia, Aureobasidium faidherbiae on dead leaf of Faidherbia albida, and Aureobasidium welwitschiae on dead leaves of Welwitschia mirabilis. Netherlands, Gaeumannomycella caricigena on dead culms of Carex elongata, Houtenomyces caricicola (incl. Houtenomyces gen. nov.) on culms of Carex disticha, Neodacampia ulmea (incl. Neodacampia gen. nov.) on branch of Ulmus laevis, Niesslia phragmiticola on dead standing culms of Phragmites australis, Pseudopyricularia caricicola on culms of Carex disticha, and Rhodoveronaea nieuwwulvenica on dead bamboo sticks. Norway, Arrhenia similis half-buried and moss-covered pieces of rotting wood in grass-grown path. Pakistan, Mallocybe ahmadii on soil. Poland, Beskidomyces laricis (incl. Beskidomyces gen. nov.) from resin of Larix decidua ssp. polonica, Lapidomyces epipinicola from sooty mould community on Pinus nigra, and Leptographium granulatum from a gallery of Dendroctonus micans on Picea abies. Portugal, Geoglossum azoricum on mossy areas of laurel forest areas planted with Cryptomeria japonica, and Lunasporangiospora lusitanica from a biofilm covering a biode","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116244179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. C., P. Crous, N. Jiang, X. Fan, Y. Liang, C. Tian
{"title":"Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China","authors":"P. C., P. Crous, N. Jiang, X. Fan, Y. Liang, C. Tian","doi":"10.3767/persoonia.2022.49.07","DOIUrl":"https://doi.org/10.3767/persoonia.2022.49.07","url":null,"abstract":"\u0000 Rosa (Rosaceae) is an important ornamental and medicinal plant genus worldwide, with several species being cultivated in China. Members of Sporocadaceae (pestalotioid fungi) are globally distributed and include endophytes, saprobes but also plant pathogens, infecting a broad range of host plants on which they can cause important plant diseases. Although several Sporocadaceae species were recorded to inhabit Rosa spp., the taxa occurring on Rosa remain largely unresolved. In this study, a total of 295 diseased samples were collected from branches, fruits, leaves and spines of eight Rosa species (R. chinensis, R. helenae, R. laevigata, R. multiflora, R. omeiensis, R. rugosa, R. spinosissima and R. xanthina) in Gansu, Henan, Hunan, Qinghai, Shaanxi Provinces and the Ningxia Autonomous Region of China. Subsequently 126 strains were obtained and identified based on comparisons of DNA sequence data. Based on these results 15 species residing in six genera of Sporocadaceae were delineated, including four known species (Pestalotiopsis chamaeropis, Pes. rhodomyrtus, Sporocadus sorbi and Spo. trimorphus) and 11 new species described here as Monochaetia rosarum, Neopestalotiopsis concentrica, N. subepidermalis, Pestalotiopsis tumida, Seimatosporium centrale, Seim. gracile, Seim. nonappendiculatum, Seim. parvum, Seiridium rosae, Sporocadus brevis, and Spo. spiniger. This study also represents the first report of Pes. chamaeropis, Pes. rhodomyrtus and Spo. sorbi on Rosa. The overall data revealed that Pestalotiopsis was the most prevalent genus, followed by Seimatosporium, while Pes. chamaeropis and Pes. rhodomyrtus were the two most prevalent species. Analysis of Sporocadaceae abundance on Rosa species and plant organs revealed that spines of R. chinensis had the highest species diversity.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129245944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Tan, S. Bishop-Hurley, R. Shivas, D. Cowan, G. Maggs-Kölling, S. Maharachchikumbura, U. Pinruan, K. Bransgrove, S. De La Peña-Lastra, E. Larsson, T. Lebel, S. Mahadevakumar, A. Mateos, E. Osieck, A. Rigueiro-Rodríguez, S. Sommai, K. Ajithkumar, A. Akulov, F. Anderson, F. Arenas, S. Balashov, A. Bañares, D. Berger, M. V. Bianchinotti, S. Bien, P. Bilański, Amelia-Grace Boxshall, M. Bradshaw, J. Broadbridge, F. Calaça, C. Campos-Quiroz, J. Carrasco-Fernández, J. F. Castro, S. Chaimongkol, S. Chandranayaka, Y. Chen, D. Comben, J. Dearnaley, A. S. Ferreira-Sá, K. Dhileepan, M. L. Diaz, P. Divakar, S. Xavier-Santos, A. Fernández-Bravo, J. Gené, F. Guard, M. Guerra, S. Gunaseelan, J. Houbraken, K. Janik-Superson, R. Jankowiak, M. Jeppson, Ž. Jurjević, M. Kaliyaperumal, L. Kelly, K. Kezo, A. Khalid, P. Khamsuntorn, D. Kidanemariam, M. Kiran, E. Lacey, G. Langer, L. Lopez-Llorca, J. Luangsa-ard, P. Lueangjaroenkit, H. Lumbsch, J. Maciá‐Vicente, L. S. Mamatha Bhanu, T. S. Marney, J. E. Marqués-Gálvez, A. Morte,
{"title":"Fungal Planet description sheets: 1436–1477","authors":"Y. Tan, S. Bishop-Hurley, R. Shivas, D. Cowan, G. Maggs-Kölling, S. Maharachchikumbura, U. Pinruan, K. Bransgrove, S. De La Peña-Lastra, E. Larsson, T. Lebel, S. Mahadevakumar, A. Mateos, E. Osieck, A. Rigueiro-Rodríguez, S. Sommai, K. Ajithkumar, A. Akulov, F. Anderson, F. Arenas, S. Balashov, A. Bañares, D. Berger, M. V. Bianchinotti, S. Bien, P. Bilański, Amelia-Grace Boxshall, M. Bradshaw, J. Broadbridge, F. Calaça, C. Campos-Quiroz, J. Carrasco-Fernández, J. F. Castro, S. Chaimongkol, S. Chandranayaka, Y. Chen, D. Comben, J. Dearnaley, A. S. Ferreira-Sá, K. Dhileepan, M. L. Diaz, P. Divakar, S. Xavier-Santos, A. Fernández-Bravo, J. Gené, F. Guard, M. Guerra, S. Gunaseelan, J. Houbraken, K. Janik-Superson, R. Jankowiak, M. Jeppson, Ž. Jurjević, M. Kaliyaperumal, L. Kelly, K. Kezo, A. Khalid, P. Khamsuntorn, D. Kidanemariam, M. Kiran, E. Lacey, G. Langer, L. Lopez-Llorca, J. Luangsa-ard, P. Lueangjaroenkit, H. Lumbsch, J. Maciá‐Vicente, L. S. Mamatha Bhanu, T. S. Marney, J. E. Marqués-Gálvez, A. Morte,","doi":"10.3767/persoonia.2022.49.08","DOIUrl":"https://doi.org/10.3767/persoonia.2022.49.08","url":null,"abstract":"\u0000 Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123532566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Species diversity, phylogeny, endemism and geography of the truffle genus Tuber in China based on morphological and molecular data","authors":"L. Fan, T. Li, Y.Y. Xu, X. Yan","doi":"10.3767/persoonia.2022.48.05","DOIUrl":"https://doi.org/10.3767/persoonia.2022.48.05","url":null,"abstract":"\u0000 The genus Tuber (Tuberaceae, Pezizales) is an important fungal group of Ascomycota both economically and ecologically. However, the species diversity, phylogenetic relationships, and geographic distribution of Tuber species in China remains poorly understood, primarily because descriptions of many new species relied heavily on morphological features with molecular data either not sought or ignored. The misapplication of European and North American names further added to confusion regarding the taxonomy of Chinese Tuber species. In this study, we examined more than 1000 specimens from China, and performed a comprehensive phylogenetic analysis for Chinese Tuber species using ITS sequences and multilocus sequence data. To infer the phylogeny of Chinese Tuber spp., 11 molecular datasets were assembled, including a concatenated internal transcribed spacers of the nuc rDNA (ITS), nuc rDNA 28S subunit (LSU), translation elongation factor 1-alpha (tef1-α), and RNA polymerase II subunit (rpb2) dataset as well as 10 ITS datasets (totally including 1435 sequences from 828 collections with 597 newly generated sequences, and 168 sequences from the types of 63 species). Our phylogenetic tree based on a concatenated multilocus dataset revealed that all Chinese Tuber species nested in nine phylogenetic clades (phylogroups), including Aestivum, Excavatum, Latisporum, Macrosporum, Maculatum, Melanosporum, Puberulum, Rufum and Turmericum. Of these, five phylogroups (Macrosporum, Maculatum, Melanosporum, Puberulum and Rufum) are shared across the continents of Asia, Europe and North America; two phylogroups (Aestivum and Excavatum) are shared by Europe and Asia; and the phylogroups Turmericum and Latisporum are endemic only to Asia. Phylogenetic trees based on 10 ITS datasets confirmed the presence of at least 82 phylogenetic species in China. Of these, 53 are identified as known species, including three new records for China, and 25 species are identified as new to science. Of the new species, nine are described and illustrated in this paper, and the others remain unnamed due to the paucity or absence of ascomatal materials. Accordingly, the confirmed, excluded and doubtful Tuber species in China are discussed. Tuber species showed high endemism. Of the 82 phylogenetic species found in China, 68 species occur only in China, six species are also found in other regions in Asia, and only eight species (T. anniae, T. excelsum-reticulatum, T. formosanum, T. maculatum, T. wenchuanense, Tuber sp. CHN-3, Tuber sp. CHN-10 and Tuber sp. CHN-11) are shared with other continents. Most Tuber species have a small and limited distribution in China, but a few, such as T. formosanum and T. parvomurphium, are widely distributed across China. Some phylogenetically closely related species, such as T. liaotongense and T. subglobosum, as well as T. xuanhuaense and T. lijiangense, show a pattern of allopatric distribution.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128844034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Araújo, B. M. Lebert, S. Vermeulen, A. Brachmann, R. Ohm, H. Evans, C. de Bekker
{"title":"Masters of the manipulator: two new hypocrealean genera, Niveomyces (Cordycipitaceae) and Torrubiellomyces (Ophiocordycipitaceae), parasitic on the zombie ant fungus Ophiocordyceps camponoti-floridani","authors":"J. Araújo, B. M. Lebert, S. Vermeulen, A. Brachmann, R. Ohm, H. Evans, C. de Bekker","doi":"10.3767/persoonia.2022.49.05","DOIUrl":"https://doi.org/10.3767/persoonia.2022.49.05","url":null,"abstract":"\u0000 During surveys in central Florida of the zombie-ant fungus Ophiocordyceps camponoti-floridani, which manipulates the behavior of the carpenter ant Camponotus floridanus, two distinct fungal morphotypes were discovered associated with and purportedly parasitic on O. camponoti-floridani. Based on a combination of unique morphology, ecology and phylogenetic placement, we discovered that these morphotypes comprise two novel lineages of fungi. Here, we propose two new genera, Niveomyces and Torrubiellomyces, each including a single species within the families Cordycipitaceae and Ophiocordycipitaceae, respectively. We generated de novo draft genomes for both new species and performed morphological and multi-loci phylogenetic analyses. The macromorphology and incidence of both new species, Niveomyces coronatus and Torrubiellomyces zombiae, suggest that these fungi are mycoparasites since their growth is observed exclusively on O. camponoti-floridani mycelium, stalks and ascomata, causing evident degradation of their fungal hosts. This work provides a starting point for more studies into fungal interactions between mycopathogens and entomopathogens, which have the potential to contribute towards efforts to battle the global rise of plant and animal mycoses.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126345134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Čmoková, M. Kolařík, J. Guillot, V. Risco-Castillo, F. Cabañes, P. Nenoff, S. Uhrlass, R. Dobiáš, N. Mallátová, T. Yaguchi, R. Kano, I. Kuklová, P. Lyskova, K. Mencl, P. Hamal, A. Peano, V. Hubka
{"title":"Host-driven subspeciation in the hedgehog fungus, Trichophyton erinacei, an emerging cause of human dermatophytosis","authors":"A. Čmoková, M. Kolařík, J. Guillot, V. Risco-Castillo, F. Cabañes, P. Nenoff, S. Uhrlass, R. Dobiáš, N. Mallátová, T. Yaguchi, R. Kano, I. Kuklová, P. Lyskova, K. Mencl, P. Hamal, A. Peano, V. Hubka","doi":"10.3767/persoonia.2022.48.06","DOIUrl":"https://doi.org/10.3767/persoonia.2022.48.06","url":null,"abstract":"\u0000 Trichophyton erinacei is a main cause of dermatophytosis in hedgehogs and is increasingly reported from human infections worldwide. This pathogen was originally described in the European hedgehog (Erinaceus europaeus) but is also frequently found in the African four-toed hedgehog (Atelerix albiventris), a popular pet animal worldwide. Little is known about the taxonomy and population genetics of this pathogen despite its increasing importance in clinical practice. Notably, whether there are different populations or even cryptic species associated with different hosts or geographic regions is not known. To answer these questions, we collected 161 isolates, performed phylogenetic and population-genetic analyses, determined mating-type, and characterised morphology and physiology. Multigene phylogeny and microsatellite analysis supported T. erinacei as a monophyletic species, in contrast to highly incongruent single-gene phylogenies. Two main subpopulations, one specific mainly to Atelerix and second to Erinaceus hosts, were identified inside T. erinacei, and slight differences in the size of microconidia and antifungal susceptibilities were observed among them. Although the process of speciation into two lineages is ongoing in T. erinacei, there is still gene flow between these populations. Thus, we present T. erinacei as a single species, with notable intraspecies variability in genotype and phenotype. The data from wild hedgehogs indicated that sexual reproduction in T. erinacei and de novo infection of hedgehogs from soil are probably rare events and that clonal horizontal spread strongly dominates. The molecular typing approach used in this study represents a suitable tool for further epidemiological surveillance of this emerging pathogen in both animals and humans. The results of this study also highlighted the need to use a multigene phylogeny ideally in combination with other independent molecular markers to understand the species boundaries of dermatophytes.\u0000","PeriodicalId":231183,"journal":{"name":"Persoonia - Molecular Phylogeny and Evolution of Fungi","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131052292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}