{"title":"Recent Trends in Gasification Based Waste-to-Energy","authors":"M. Saghir, M. Rehan, A. Nizami","doi":"10.5772/INTECHOPEN.74487","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74487","url":null,"abstract":"Addressing the contemporary waste management is seeing a shift towards energy pro- duction while managing waste sustainably. Consequently, waste treatment through gasification is slowly taking over the waste incineration with multiple benefits, including simultaneous waste management and energy production while reducing landfill volumes and displacing conventional fossil fuels. Only in the UK, there are around 14 commercial plants built to operate on gasification technology. These include fixed bed and fluidized bed gasification reactors. Ultra-clean tar free gasification of waste is now the best available technique and has experienced a significant shift from two-stage gasification and combustion towards a one-stage system for gasification and syngas cleaning. Nowadays in gasi- fication sector, more companies are developing commercial plants with tar cracking and syngas cleaning. Moreover, gasification can be a practical scheme when applying ultra- clean syngas for a gas turbine with heat recovery by steam cycle for district heating and cooling (DHC) systems. This chapter aims to examine the recent trends in gasification- based waste-to-energy technologies. Furthermore, types of gasification technologies, their challenges and future perspectives in various applications are highlighted in detail.","PeriodicalId":227902,"journal":{"name":"Gasification for Low-grade Feedstock","volume":"5 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126533663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small-Scale Energy Use of Agricultural Biogas Plant Wastes by Gasification","authors":"Dariusz Wiśniewski, M. Siudak, J. Piechocki","doi":"10.5772/INTECHOPEN.71700","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.71700","url":null,"abstract":"In Poland, there are 78 biogas plants producing a total electrical power of 85.94 MW. The byproduct of biogas plants is called a digestate. A single biogas plant with a power of 500 kW produces more than 10,000 ton of digestate per year. The goal of this chapter is to present a low-cost method of raw digestate processing with water content of about 94.55%, and also the results of thermal gasification of dried and pelletized digestate. Initial dehydration method is based on mechanical separation of the solid fraction in screw separator with a slot filter. Pre-dewatered digestate had been dried in biodrying process in semi-technical scale bioreactor. Afterward, the digestate was dried in tubular dryer and pelletized. The chapter covers the energy consumption for each stage of preparation of digestate for thermal gasification process. The gasification tests were conducted in fixed bed downdraft reactor. The chapter also features the physicochemical properties of digestate used in gasification process. The result of research on the gasification of drier digestate was gaseous fuel that does not differ from the quality of fuels obtained from the thermal treatment of other types of biomass.","PeriodicalId":227902,"journal":{"name":"Gasification for Low-grade Feedstock","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125837385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated Gasification System for Power and Hydrogen Production","authors":"L. A. Prananto, Muhammad Aziz","doi":"10.5772/INTECHOPEN.71841","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.71841","url":null,"abstract":"The growth of economic and living standard leads to more electricity demand. Unfortu- nately, due to more limitation of power station area and electricity grid development, energy delivery issue is rising up; hence, new method of delivering the power by different energy carrier is necessary to investigate. Hydrogen has the promising potential as an energy carrier due to its high gravimetric energy density and cleanliness to the environment. For comfortable storage and transportation, hydrogen is covalently bonded to methylcyclohexane (MCH) and liquid organic hydrogen carrier (LOHC). In this chapter, novel integrated gasification systems for coproduction of electricity and MCH from low-rank coal and microalgae have been proposed. The total energy effi- ciency is improved by applying enhanced process integration (EPI) technology to minimize exergy losses throughout the integrated system. The integrated system for microalgae is capable to provide more than 60% of total energy efficiency, while the integrated system for low-rank coal delivers the total energy efficiency of 84%.","PeriodicalId":227902,"journal":{"name":"Gasification for Low-grade Feedstock","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115301439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}