{"title":"A deep learning-based approach to time-coordination entry guidance for multiple hypersonic vehicles","authors":"Z. Li, J. Guo, S. Tang, S. Ji","doi":"10.1017/aer.2022.82","DOIUrl":"https://doi.org/10.1017/aer.2022.82","url":null,"abstract":"\u0000 A multiple-vehicles time-coordination guidance technique based on deep learning is suggested to address the cooperative guiding problem of hypersonic gliding vehicle entry phase. A dual-parameter bank angle profile is used in longitudinal guiding to meet the requirements of time coordination. A vehicle trajectory database is constructed along with a deep neural network (DNN) structure devised to fulfill the error criteria, and a trained network is used to replace the conventional prediction approach. Moreover, an extended Kalman filter is constructed to detect changes in aerodynamic parameters in real time, and the aerodynamic parameters are fed into a DNN. The lateral guiding employs a logic for reversing the sign of bank angle, which is based on the segmented heading angle error corridor. The final simulation results demonstrate that the built DNN is capable of addressing the cooperative guiding requirements. The algorithm is highly accurate in terms of guiding, has a fast response time, and does not need inter-munition communication, and it is capable of solving guidance orders that satisfy flight requirements even when aerodynamic parameter disruptions occur.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88258499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A deep reinforcement learning-based approach to onboard trajectory generation for hypersonic vehicles","authors":"C. Bao, X. Zhou, P. Wang, R. He, G. Tang","doi":"10.1017/aer.2023.4","DOIUrl":"https://doi.org/10.1017/aer.2023.4","url":null,"abstract":"\u0000 An onboard three-dimensional (3D) trajectory generation approach based on the reinforcement learning (RL) algorithm and deep neural network (DNN) is proposed for hypersonic vehicles in glide phase. Multiple trajectory samples are generated offline through the convex optimisation method. The deep learning (DL) is employed to pre-train the DNN for initialising the actor network and accelerating the RL process. Based on the offline deep policy deterministic actor-critic algorithm, a flight target-oriented reward function with path constraints is designed. The actor network is optimised by the end-to-end RL and policy gradients of the critic network until the reward function converges to the maximum. The actor network is considered as the onboard trajectory generator to compute optimal control values online based on the real-time motion states. The simulation results show that the single-step online planning time meets the real-time requirements of onboard trajectory generation. The significant improvement in terminal accuracy of the online trajectory and the better generalisation under biased initial states for hypersonic vehicles in glide phase is observed.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90596315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-precision controller using LMI method for three-axis flexible satellite attitude stabilisation","authors":"B. J. Eddine, K. Boulanouar, B. Elhassen","doi":"10.1017/aer.2023.3","DOIUrl":"https://doi.org/10.1017/aer.2023.3","url":null,"abstract":"\u0000 This paper considers the problem of a three-axis flexible satellite attitude stabilisation subject to the vibration of flexible appendages and external environmental disturbances, which affect the rigid body motion. To solve this problem, a disturbance observer is proposed to estimate and thereby reject the flexible appendage vibration. Based on the H∞ and Linear Matrix Inequality (LMI) approach, a controller for spacecraft with flexible appendages is proposed to ensure robustness as well as attitude stability with high precision. Stability analysis of the overall closed-loop system is provided via the Lyapunov method. The simulation results of three-axis flexible spacecraft demonstrate the robustness and effectiveness of the proposed method.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88868737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Dong, T. Li, S. Zheng, Z.W. Wang, Y. Tang, X. Ma, Y. Li
{"title":"Analytical method for computing assembly errors in modular antenna during on-orbit assembly","authors":"H. Dong, T. Li, S. Zheng, Z.W. Wang, Y. Tang, X. Ma, Y. Li","doi":"10.1017/aer.2023.5","DOIUrl":"https://doi.org/10.1017/aer.2023.5","url":null,"abstract":"\u0000 To meet the increasing communication demands, the satellites need to be equipped with the high-accuracy and large-aperture antennas. One of the effective methods to construct the modular antennas with ultra-high accuracy and ultra-large aperture is on-orbit assembly technology. During the on-orbit assembly missions, the assembly error is a key factor to affect the surface accuracy of the modular antennas. This paper studies the node design of each module and the assembly error analysis of the modular antennas. A design method of the module nodes is presented with consideration of the assembly gap between two modules. Meanwhile, a soft connection mechanism is designed to ensure the mobility among the assembly modules. To investigate the transmission law of the assembly errors, an analytical model of assembly error is derived based on the exponential product method. In order to establish the deformation surface with rotation and displacement assembly errors, an error ball concept is proposed by the analytical model. To decrease the assembly errors, the actuators are installed among some modules. Moreover, an adjustment method is proposed to obtain the adjustment amounts of actuators. Finally, the correctness of analytical model and the effectiveness of the adjustment method are demonstrated by the numerical simulations.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"41 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91465142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Blundell, C. Collins, R. Sears, T. Plioutsias, J. Huddlestone, D. Harris, J. Harrison, A. Kershaw, P. Harrison, P. Lamb
{"title":"Low-visibility commercial ground operations: An objective and subjective evaluation of a multimodal display","authors":"J. Blundell, C. Collins, R. Sears, T. Plioutsias, J. Huddlestone, D. Harris, J. Harrison, A. Kershaw, P. Harrison, P. Lamb","doi":"10.1017/aer.2022.81","DOIUrl":"https://doi.org/10.1017/aer.2022.81","url":null,"abstract":"\u0000 Flight crews’ capacity to conduct take-off and landing in near zero visibility conditions has been partially addressed by advanced surveillance and cockpit display technology. This capability is yet to be realised within the context of manoeuvring aircraft within airport terminal areas. In this paper the performance and workload benefits of user-centre designed visual and haptic taxi navigational cues, presented via a head-up display (HUD) and active sidestick, respectively, were evaluated in simulated taxiing trials by 12 professional pilots. In addition, the trials sought to examine pilot acceptance of side stick nose wheel steering. The HUD navigational cues demonstrated a significant task-specific benefit by reducing centreline deviation during turns and the frequency of major taxiway deviations. In parallel, the visual cues reduced self-report workload. Pilot’s appraisal of nose wheel steering by sidestick was positive, and active sidestick cues increased confidence in the multimodal guidance construct. The study presents the first examination of how a multimodal display, combining visual and haptic cues, could support the safety and efficiency in which pilots are able to conduct a taxi navigation task in low-visibility conditions.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78795519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of a real-time simulation environment for helicopter air-to-air refuelling investigations","authors":"S. Schmidt, Mitchell A. Jones, P. Löchert","doi":"10.1017/aer.2022.106","DOIUrl":"https://doi.org/10.1017/aer.2022.106","url":null,"abstract":"\u0000 The ability to perform air-to-air refuelling (AAR) can dramatically extend the utility of helicopters, through effectively providing unlimited range. For helicopters, AAR is typically performed utilising the probe-and-drogue aerial refuelling method. This is a complex manoeuver, where normally both the helicopter and tanker aircraft are operating at the limits of their flight envelopes. In addition, the wake flow from the tanker aircraft can cause a significant disturbance on the refuelling helicopter. This paper presents the initial evaluation of an AAR scenario constructed within DLR’s flight simulator, the Air Vehicle Simulator (AVES), based on current procedures and pilot interviews. A mission task was defined to assess the scenario in AVES and results are subsequently discussed. For pilots unfamiliar to formation flight or HAAR, the results show the difficulty of the flying task itself at the given cueing. Measures for improvement in future investigations are suggested.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73468027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-pilot airline operations: Designing the aircraft may be the easy part","authors":"D. Harris","doi":"10.1017/aer.2022.110","DOIUrl":"https://doi.org/10.1017/aer.2022.110","url":null,"abstract":"Abstract For financial and operational reasons many aircraft manufacturers are working on the development of single-pilot commercial aircraft. It is suggested that cargo operations may commence in the early 2030s followed by passenger flights later that decade. Two technological approaches for the development of single-pilot airliners are being developed either based upon extant technology and operating concepts derived from uninhabited aviation systems and military aircraft, or alternatively based upon high levels of onboard autonomy/automation. This review considers the economic, technological, regulatory (safety) and societal acceptance of the single-pilot airliner, and examines some of the operational challenges that airlines may face. It is suggested that while the technological and safety challenges may be resolved, it is the operational challenges that may determine if the concept is ultimately viable.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"29 1","pages":"1171 - 1191"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83352548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-scale temporal characters mining for bird activities based on historical avian radar system datasets","authors":"Q. Xu, J. Liu, M. Su, W.S. Chen","doi":"10.1017/aer.2023.1","DOIUrl":"https://doi.org/10.1017/aer.2023.1","url":null,"abstract":"\u0000 Avian radar systems are effective for wide-area bird detection and tracking, but application significances need further exploration. Existing radar data mining methods provide long-term functionalities, but they are problematic for bird activity modelling especially in temporal domain. This paper complements this insufficiency by introducing a temporal bird activity extraction and interpretation method. The bird behaviour is quantified as the activity degree which integrates intensity and uncertainty characters with an entropy weighing algorithm. The method is applicable in multiple temporal scales. Historical radar dataset from a system deployed in an airport is adopted for verification. Temporal characters demonstrate good consistency with understandings from local observers and ornithologists. Daily commuting and roosting characters of local birds are well reflected, evening bat activities are also extracted. Night migration activities are demonstrated clearly. Results indicate the proposed method is effective in temporal bird activity modelling and interpretation. Its integration with bird strike risk models might be more useful for airport safety management with wildlife interference.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87862424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of FFD parametric approach in the application of a lifting body","authors":"J. Leng, Z.-g. Wang, W. Huang, Y. Shen, K. An","doi":"10.1017/aer.2022.111","DOIUrl":"https://doi.org/10.1017/aer.2022.111","url":null,"abstract":"\u0000 FFD (free-form deformation method) is one of the most commonly used parameterisation methods at present. It places the parameterised objects inside the control volume through coordinate system transformation, and controls the control volume through control points, thus realising the deformation control of its internal objects. Firstly, this paper systematically analyses and compares the characteristics and technical requirements of Bernstein, B-spline and NURBS (non-uniform rational b-splines) basic functions that can be adopted by FFD, and uses the minimum number of control points required to achieve the specified control effect threshold to express the control capability. Aiming at the problem of discontinuity at the right end in the actual calculation of B-spline basis function, a method of adding a small epsilon is proposed to solve it. Then, three basic functions are applied to the FFD parameterisation method, respectively, and the differences are compared from two aspects of the accurate expression of the model and the ability of deformation control. It is found that the BFFD (b-spline free-form deformation) approach owns better comprehensive performance when the control points are distributed correctly. In this paper, the BFFD method is improved, and a p-BFFD (reverse solution points based BFFD) method based on inverse solution is proposed to realise the free distribution of control points under the specified topology. Further, for the lifting body configuration, the control points of the p-BFFD method are brought closer to the airframe forming the EDGE-p-BFFD (edge constraints based p-BFFD) method. For the case in this paper, the proposed EDGE-p-BFFD method not only has fairly high parameterisation accuracy, but also reduces the expression error from 1.01E-3 to 1.25E-4, which is nearly ten times. It can also achieve effective lifting body guideline constraints, and has the ability of local deformation adapting to the configuration characteristics. In terms of the proportion of effective control points, the EDGE-p-BFFD method increases the proportion of effective control points from 36.7% to 50%, and the more control points, the more obvious the proportion increase effect. The new method also has better effect on the continuity of geometric deformation. At the same time, this paper introduces the independent deformation method of the upper and lower surfaces based on the double control body frames, which effectively avoids the deformation coupling problem of the simultaneous change of the upper and lower surfaces caused by the movement of control points in the traditional single control framework.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"104 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79210280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tail-shake risks assessment & mitigation by wind-tunnel tests on air-intake installation on a heavy-weight H/C configuration","authors":"D. Desvigne, V. Bichon","doi":"10.1017/aer.2022.108","DOIUrl":"https://doi.org/10.1017/aer.2022.108","url":null,"abstract":"Abstract In this work, the key role of the upper-deck design including engine installation as a potential source of tail-shake is at focus. The work is based on a Wind-Tunnel Test (WTT) campaign performed at the Airbus Helicopters’ Marignane wind-tunnel facilities on a high-fidelity minibody fuselage at scale 1:3.5 representing a generic heavy-helicopter upper deck. Two different engine intake installations for a Power Unit (PU) have been investigated; in a first configuration, the air intake is implemented at the pylon-fairing trailing edge. The second configuration consists in positioning two air intakes on each side of the pylon fairing, close to the maximum cross-section location. Different measurement methods to evaluate aerodynamic interactions and wake sources are proposed: flow-separation assessments from surface oil flow visualisations, time-resolved Particle Image Velocimetry (PIV) measurements and unsteady skin-pressure measurements at the cowlings. Tail-shake-related indicators are then proposed. Basically, a configuration that produces strong vortices characterised by a broadband spectral signature is believed to gather all the conditions for tail-shake to emerge. The flow over the clean configuration is first analysed for various combinations of angle-of-attack and sideslip, highlighting four different areas of flow separation at the cowlings. The complex flow topology around the upper deck is then assessed, which includes a spectral analysis of the flow in the PIV planes. The influence of the air intakes (operating or not) is then evaluated. When located at the pylon-fairing trailing edge and operating, the air intake has a spectacular impact on the flow-field topology. It is responsible for the generation of an intense broadband wake interacting with the pylon-fairing lip vortices, which is believed to be a potential source of tail-shake. The second air-intake configuration is also not favourable, as it requires enlarging the pylon fairing by 100mm, which causes an intense wake similarly to a blunt body. At last, a mitigation mean is proposed for the first configuration. It demonstrates a significant reduction of the wake intensity and broadband signature at the source.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"37 1","pages":"1192 - 1218"},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90351845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}