Eric R. Schuppe, Daniel J Tobiansky, F. Goller, Matthew J. Fuxjager
{"title":"Specialized androgen synthesis in skeletal muscles that actuate elaborate social displays.","authors":"Eric R. Schuppe, Daniel J Tobiansky, F. Goller, Matthew J. Fuxjager","doi":"10.1242/jeb.243730","DOIUrl":"https://doi.org/10.1242/jeb.243730","url":null,"abstract":"Androgens mediate the expression of many reproductive behaviors, including the elaborate displays used to navigate courtship and territorial interactions. In some vertebrates, males can produce androgen-dependent sexual behavior even when levels of testosterone (T) is low in the bloodstream. One idea is that select tissues make their own androgens from scratch to support behavioral performance. We first study this phenomenon in the skeletal muscles that actuate elaborate sociosexual displays in downy woodpeckers and two songbirds. We show that the woodpecker display muscle maintains elevated T when the testes are regressed in the non-breeding season. Both the display muscles of woodpeckers, as well as the display muscles in the avian vocal organ (syrinx or SYR) of songbirds, express all transporters and enzymes necessary to convert cholesterol into bioactive androgens locally. In a final analysis, we broaden our study by looking for these same transporters and enzymes in mammalian muscles that operate at different speeds. Using RNA-seq data, we find that the capacity for de novo synthesis is only present in \"superfast\" extraocular muscle. Together, our results suggest that skeletal muscle specialized to generate extraordinary twitch-times and/or extremely rapid contractile speeds may depend on androgenic hormones produced locally within the muscle itself. Our study therefore uncovers an important new dimension of androgenic regulation of behavior.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74640478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Puncture performance tests reveal distinct feeding modes in pinniped teeth.","authors":"C. M. Peredo, D. N. Ingle, C. Marshall","doi":"10.1242/jeb.244296","DOIUrl":"https://doi.org/10.1242/jeb.244296","url":null,"abstract":"Marine mammals underwent a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 Ma). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphologies and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp). We report signficant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective, and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, Orientation Patch Count Rotated (OPCR) and Relif Index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82511776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Thongbuakaew, Sirirak Mukem, A. Chaiyamoon, Kanjana Khornchatri, T. Kruangkum, S. Cummins, P. Sobhon
{"title":"Characterization, expression, and function of the pyrokinins (PKs) in the giant freshwater prawn, Macrobrachium rosenbergii.","authors":"T. Thongbuakaew, Sirirak Mukem, A. Chaiyamoon, Kanjana Khornchatri, T. Kruangkum, S. Cummins, P. Sobhon","doi":"10.1242/jeb.243742","DOIUrl":"https://doi.org/10.1242/jeb.243742","url":null,"abstract":"Pyrokinins (PKs) are neuropeptides that have been found to regulate a variety of physiological activities including reproduction in various insect and crustacean species. However, the reproductive roles of PKs in the giant freshwater prawn have not yet been investigated. In this study, we identified the MroPK gene from next-generation sequence resources, which encodes a MroPK precursor that shares a high degree of conservation with the C-terminal sequence of FxPRLamide in other arthropods. MroPK is expressed within most tissues, except the hepatopancreas, stomach, and gill. Within developing ovarian tissue, MroPK expression was found to be significantly higher during the early stages (stages 1-2) compared with the late stages (stages 3-4), and could be localized to the oogonia, previtellogenic, and early vitellogenic oocytes. A role for PK in M. rosenbergii reproduction was supported following experimental administration of MroPK to ovarian explant cultures, showing an increase in the productions of progesterone and estradiol and upregulation of steroidogenesis-related genes (3β-HSD and 17β-HSD) and vitellogenin (Vg) expressions. Together, these results support a role for MroPK in regulating ovarian maturation via steroidogenesis.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79987150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glucose tolerance predicts survival in old zebra finches.","authors":"Bibiana Montoya, M. Briga, B. Jimeno, S. Verhulst","doi":"10.1242/jeb.243205","DOIUrl":"https://doi.org/10.1242/jeb.243205","url":null,"abstract":"The capacity to deal with external and internal challenges is thought to affect fitness, and the age-linked impairment of this capacity defines the ageing process. Using a recently developed intra-peritoneal glucose tolerance test (GTT) in zebra finches, we tested for a link between the capacity to regulate glucose levels and survival. We also investigated for the effects of ambient factors, age, sex, and manipulated developmental and adult conditions (i.e. natal brood size and foraging cost, in a full factorial design) on glucose tolerance. Glucose tolerance was quantified using the incremental 'area under the curve' (AUC), with lower values indicating higher tolerance. Glucose tolerance predicted survival probability in old birds, above the median age, with individuals with higher glucose tolerance showing better survival than individuals with low or intermediate glucose tolerance. In young birds there was no association between glucose tolerance and survival. Experimentally induced adverse developmental conditions did not affect glucose tolerance, but low ambient temperature at sampling and hard foraging conditions during adulthood induced a fast return to baseline levels (i.e. high glucose tolerance). These findings can be interpreted as an efficient return to baseline glucose levels when energy requirements are high, with glucose presumably being used for energy metabolism or storage. Glucose tolerance was independent of sex. Our main finding that old birds with higher glucose tolerance had better survival supports the hypothesis that the capacity to efficiently cope with a physiological challenge predicts lifespan, at least in old birds.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88508200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation of p53 in anoxic freshwater crayfish, Faxonius virilis.","authors":"Aakriti Gupta, Sarah A. Breedon, K. Storey","doi":"10.1242/jeb.244145","DOIUrl":"https://doi.org/10.1242/jeb.244145","url":null,"abstract":"Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis, and autophagy. The current work studies stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response was measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 was assessed using immunoblotting at sites known to be phosphorylated (Serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phospho-p53 was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low oxygen stress were studied. The results showed an increase in p53 levels during anoxia in both hepatopancreases and tail muscle. Increased transcript levels of ei24, a downstream target of p53, support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser-15 p-p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low oxygen stress. Understanding how anoxia-tolerant organisms are able to protect against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76082489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anna's hummingbird (Calypte anna) physiological response to novel thermal and hypoxic conditions at high elevations.","authors":"Austin R. Spence, Hannah LeWinter, M. Tingley","doi":"10.1242/jeb.243294","DOIUrl":"https://doi.org/10.1242/jeb.243294","url":null,"abstract":"Many species have not tracked their thermal niches upslope as predicted by climate change, potentially because higher elevations are associated with abiotic challenges beyond temperature. To better predict whether organisms can continue to move upslope with rising temperatures, we need to understand their physiological performance when subjected to novel high-elevation conditions. Here, we captured Anna's hummingbirds - a species expanding their elevational distribution in concordance with rising temperatures - from across their current elevational distribution and tested their physiological response to novel abiotic conditions. First, at a central aviary within their current elevational range, we measured hovering metabolic rate to assess their response to oxygen conditions and torpor use to assess their response to thermal conditions. Second, we transported the hummingbirds to a location 1200 m above their current elevational range limit to test for an acute response to novel oxygen and thermal conditions. Hummingbirds exhibited lower hovering metabolic rates above their current elevational range limit, suggesting lower oxygen availability may reduce performance after an acute exposure. Alternatively, hummingbirds showed a facultative response to thermal conditions by using torpor more frequently and for longer. Finally, post-experimental dissection found that hummingbirds originating from higher elevations within their range had larger hearts, a potential plastic response to hypoxic environments. Overall, our results suggest lower oxygen availability and low air pressure may be difficult challenges to overcome for hummingbirds shifting upslope as a consequence of rising temperatures, especially if there is little to no long-term acclimatization. Future studies should investigate how chronic exposure and acclimatization to novel conditions, as opposed to acute experiments, may result in alternative outcomes that help organisms better respond to abiotic challenges associated with climate-induced range shifts.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74515674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global change and physiological challenges for fish of the Amazon today and in the near future.","authors":"Adalberto Luis Val, C. Wood","doi":"10.1242/jeb.216440","DOIUrl":"https://doi.org/10.1242/jeb.216440","url":null,"abstract":"Amazonia is home to 15% (>2700, in 18 orders) of all the freshwater fish species of the world, many endemic to the region, has 65 million years of evolutionary history and accounts for 20% of all freshwater discharge to the oceans. These characteristics make Amazonia a unique region in the world. We review the geological history of the environment, its current biogeochemistry and the evolutionary forces that led to the present endemic fish species that are distributed amongst three very different water types: black waters [acidic, ion-poor, rich in dissolved organic carbon (DOC)], white waters (circumneutral, particle-rich) and clear waters (circumneutral, ion-poor, DOC-poor). The annual flood pulse is the major ecological driver for fish, providing feeding, breeding and migration opportunities, and profoundly affecting O2, CO2 and DOC regimes. Owing to climate change and other anthropogenic pressures such as deforestation, pollution and governmental mismanagement, Amazonia is now in crisis. The environment is becoming hotter and drier, and more intense and frequent flood pulses are now occurring, with greater variation between high and low water levels. Current projections are that Amazon waters of the near future will be even hotter, more acidic, darker (i.e. more DOC, more suspended particles), higher in ions, higher in CO2 and lower in O2, with many synergistic effects. We review current physiological information on Amazon fish, focusing on temperature tolerance and ionoregulatory strategies for dealing with acidic and ion-poor environments. We also discuss the influences of DOC and particles on gill function, the effects of high dissolved CO2 and low dissolved O2, with emphasis on water- versus air-breathing mechanisms, and strategies for pH compensation. We conclude that future elevations in water temperature will be the most critical factor, eliminating many species. Climate change will likely favour predominantly water-breathing species with low routine metabolic rates, low temperature sensitivity of routine metabolic rates, high anaerobic capacity, high hypoxia tolerance and high thermal tolerance.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84513322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bivalves maintain repair when faced with chronically repeated mechanical stress.","authors":"R. L. Crane, M W Denny","doi":"10.1242/jeb.243813","DOIUrl":"https://doi.org/10.1242/jeb.243813","url":null,"abstract":"Even though mollusks' capacity to repair shell damage is usually studied in response to a single event, their shells have to defend them against predatory and environmental threats throughout their potentially multi-decadal life. We measured whether and how mollusks respond to chronic mechanical stress. Once a week for 7 months, we compressed whole live California mussels (Mytilus californianus) for 15 cycles at ∼55% of their predicted one-time breaking force, a treatment known to cause fatigue damage in shells. We found mussels repaired their shells. Shells of experimentally stressed mussels were just as strong at the end of the experiment as those of control mussels that had not been experimentally loaded, and they were more heavily patched internally. Additionally, stressed shells differed in morphology; they were heavier and thicker at the end of the experiment than control shells but they had increased less in width, resulting in a flatter, less domed shape. Finally, the chronic mechanical stress and repair came at a cost, with stressed mussels having higher mortality and less soft tissue than the control group. Although associated with significant cost, mussels' ability to maintain repair in response to ongoing mechanical stress may be vital to their survival in harsh and predator-filled environments.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80544518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilias Foskolos, M. B. Pedersen, K. Beedholm, Astrid Særmark Uebel, J. Macaulay, Laura Stidsholt, Signe M. M. Brinkløv, P. Madsen
{"title":"Echolocating Daubenton's bats are resilient to broadband, ultrasonic masking noise during active target approaches.","authors":"Ilias Foskolos, M. B. Pedersen, K. Beedholm, Astrid Særmark Uebel, J. Macaulay, Laura Stidsholt, Signe M. M. Brinkløv, P. Madsen","doi":"10.1242/jeb.244494","DOIUrl":"https://doi.org/10.1242/jeb.244494","url":null,"abstract":"","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78011459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The physiological cost of colour change: evidence, implications and mitigations.","authors":"Ateah Alfakih, P. J. Watt, Nicola J. Nadeau","doi":"10.1242/jeb.210401","DOIUrl":"https://doi.org/10.1242/jeb.210401","url":null,"abstract":"Animals benefit from phenotypic plasticity in changing environments, but this can come at a cost. Colour change, used for camouflage, communication, thermoregulation and UV protection, represents one of the most common plastic traits in nature and is categorised as morphological or physiological depending on the mechanism and speed of the change. Colour change has been assumed to carry physiological costs, but current knowledge has not advanced beyond this basic assumption. The costs of changing colour will shape the evolution of colour change in animals, yet no coherent research has been conducted in this area, leaving a gap in our understanding. Therefore, in this Review, we examine the direct and indirect evidence of the physiological cost of colour change from the cellular to the population level, in animals that utilise chromatophores in colour change. Our Review concludes that the physiological costs result from either one or a combination of the processes of (i) production, (ii) translocation and (iii) maintenance of pigments within the colour-containing cells (chromatophores). In addition, both types of colour change (morphological and physiological) pose costs as they require energy for hormone production and neural signalling. Moreover, our Review upholds the hypothesis that, if repetitively used, rapid colour change (i.e. seconds-minutes) is more costly than slow colour change (days-weeks) given that rapidly colour-changing animals show mitigations, such as avoiding colour change when possible. We discuss the potential implications of this cost on colour change, behaviour and evolution of colour-changing animals, generating testable hypotheses and emphasising the need for future work to address this gap.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81377636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}