{"title":"Puncture performance tests reveal distinct feeding modes in pinniped teeth.","authors":"C. M. Peredo, D. N. Ingle, C. Marshall","doi":"10.1242/jeb.244296","DOIUrl":null,"url":null,"abstract":"Marine mammals underwent a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 Ma). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphologies and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp). We report signficant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective, and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, Orientation Patch Count Rotated (OPCR) and Relif Index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jeb.244296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Marine mammals underwent a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 Ma). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphologies and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp). We report signficant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective, and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, Orientation Patch Count Rotated (OPCR) and Relif Index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.