{"title":"On the efficient design of a prototype-based classifier using differential evolution","authors":"Luiz A. Soares Filho, G. Barreto","doi":"10.1109/SDE.2014.7031535","DOIUrl":"https://doi.org/10.1109/SDE.2014.7031535","url":null,"abstract":"In this paper we introduce an evolutionary approach for the efficient design of prototype-based classifiers using differential evolution (DE). For this purpose we amalgamate ideas from the Learning Vector Quantization (LVQ) framework for supervised classification by Kohonen [1], [2], with the DEbased automatic clustering approach by Das et al. [3] in order to evolve supervised classifiers. The proposed approach is able to determine both the optimal number of prototypes per class and the corresponding positions of these prototypes in the data space. By means of comprehensive computer simulations on benchmarking datasets, we show that the resulting classifier, named LVQ-DE, consistently outperforms state-of-the-art prototype-based classifiers.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125902434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study on self-configuration in the differential evolution algorithm","authors":"R. Silva, R. A. Lopes, A. Freitas, F. Guimarães","doi":"10.1109/SDE.2014.7031531","DOIUrl":"https://doi.org/10.1109/SDE.2014.7031531","url":null,"abstract":"The great development in the area of evolutionary algorithms in recent decades has increased the range of applications of these tools and improved its performance in different fronts. In particular, the Differential Evolution (DE) algorithm has proven to be a simple and efficient optimizer in several contexts. Despite of its success, its performance is closely related to the choice of variation operators and the parameters which control these operators. To increase the robustness of the method and the ease of use for the average user, the pursuit for methods of self-configuration has been increasing as well. There are several methods in the literature for setting parameters and operators. In order to understand the effects of these approaches on the performance of DE, this paper presents a thorough experimental analysis of the main existing paradigms. The results show that simple approaches are able to bring significant improvements to the performance of DE.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123795480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MDE: Differential evolution with merit-based mutation strategy","authors":"Amin Ibrahim, S. Rahnamayan, Miguel Vargas Martin","doi":"10.1109/SDE.2014.7031533","DOIUrl":"https://doi.org/10.1109/SDE.2014.7031533","url":null,"abstract":"Currently Differential Evolution (DE) is arguably the most powerful and widely used stochastic population-based real-parameter optimization algorithm. There have been variant DE-based algorithms in the literature since its introduction in 1995. This paper proposes a novel merit-based mutation strategy for DE (MDE); it is based on the performance of each individual in the past and current generations to improve the solution accuracy. MDE is compared with three commonly used mutation strategies on 28 standard numerical benchmark functions introduced in the IEEE Congress on Evolutionary Computation (CEC-2013) special session on real parameter optimization. Experimental results confirm that MDE outperforms the classical DE mutation strategies for most of the test problems in terms of convergence speed and solution accuracy.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128931773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}