MDE: Differential evolution with merit-based mutation strategy

Amin Ibrahim, S. Rahnamayan, Miguel Vargas Martin
{"title":"MDE: Differential evolution with merit-based mutation strategy","authors":"Amin Ibrahim, S. Rahnamayan, Miguel Vargas Martin","doi":"10.1109/SDE.2014.7031533","DOIUrl":null,"url":null,"abstract":"Currently Differential Evolution (DE) is arguably the most powerful and widely used stochastic population-based real-parameter optimization algorithm. There have been variant DE-based algorithms in the literature since its introduction in 1995. This paper proposes a novel merit-based mutation strategy for DE (MDE); it is based on the performance of each individual in the past and current generations to improve the solution accuracy. MDE is compared with three commonly used mutation strategies on 28 standard numerical benchmark functions introduced in the IEEE Congress on Evolutionary Computation (CEC-2013) special session on real parameter optimization. Experimental results confirm that MDE outperforms the classical DE mutation strategies for most of the test problems in terms of convergence speed and solution accuracy.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Differential Evolution (SDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDE.2014.7031533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently Differential Evolution (DE) is arguably the most powerful and widely used stochastic population-based real-parameter optimization algorithm. There have been variant DE-based algorithms in the literature since its introduction in 1995. This paper proposes a novel merit-based mutation strategy for DE (MDE); it is based on the performance of each individual in the past and current generations to improve the solution accuracy. MDE is compared with three commonly used mutation strategies on 28 standard numerical benchmark functions introduced in the IEEE Congress on Evolutionary Computation (CEC-2013) special session on real parameter optimization. Experimental results confirm that MDE outperforms the classical DE mutation strategies for most of the test problems in terms of convergence speed and solution accuracy.
MDE:基于优势的变异策略的差异进化
差分进化算法是目前最强大、应用最广泛的基于随机种群的实参数优化算法。自1995年引入以来,文献中出现了各种基于de的算法。提出了一种新的基于优值的遗传变异策略。它是基于每个个体在过去和当前几代的表现来提高解决方案的准确性。在IEEE进化计算大会(CEC-2013)实参数优化专题会议上介绍的28个标准数值基准函数上,将MDE与三种常用的突变策略进行了比较。实验结果证实,对于大多数测试问题,MDE在收敛速度和求解精度方面都优于经典DE突变策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信